Department of Physics, Kansas State University, Manhattan, Kansas.
Department of Physics, Kansas State University, Manhattan, Kansas.
Biophys J. 2018 Jan 9;114(1):76-87. doi: 10.1016/j.bpj.2017.10.040.
The addition of salt to protein solutions can either increase or decrease the protein solubility, and the magnitude of this effect depends on the salt used. We show that these effects can be captured using a theory that includes attractive and repulsive electrostatic interactions, nonelectrostatic protein-ion interactions, and ion-solvent interactions via an effective solvated ion radius. We find that the ion radius has significant effects on the translational entropy of the salt, which leads to salt specificity in the protein solubility. At low salt, the dominant effect comes from the entropic cost of confining ions within the aggregate, whereas at high concentrations, the salt drives a depletion attraction that favors aggregation. Our theory explains the reversal in the Hofmeister series observed in lysozyme cloud point measurements and semi-quantitatively describes the solubility of lysozyme and chymosin crystals. We present a comparison of the contributions to the free energy and give guidelines for when salting in or salting out should be expected.
向蛋白质溶液中添加盐可以增加或减少蛋白质的溶解度,这种影响的大小取决于所用的盐。我们表明,这些效应可以通过一种理论来捕捉,该理论包括吸引力和排斥力的静电相互作用、非静电蛋白质-离子相互作用以及通过有效溶剂化离子半径的离子-溶剂相互作用。我们发现,离子半径对盐的平移熵有显著影响,这导致了蛋白质溶解度中的盐特异性。在低盐浓度下,主要影响来自于将离子限制在聚集体内的熵成本,而在高浓度下,盐会产生耗尽吸引力,有利于聚集。我们的理论解释了在溶菌酶浊点测量中观察到的 Hofmeister 序列的反转,并半定量地描述了溶菌酶和凝乳蛋白酶晶体的溶解度。我们比较了自由能的贡献,并给出了应该期望盐溶或盐析的指导原则。