Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637.
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115.
J Biol Chem. 2018 Feb 23;293(8):2815-2828. doi: 10.1074/jbc.RA117.000656. Epub 2018 Jan 10.
Conformational changes in proteins due to ligand binding are ubiquitous in biological processes and are integral to many biological systems. However, it is often challenging to link ligand-induced conformational changes to a resulting biological function because it is difficult to distinguish between the energetic components associated with ligand binding and those due to structural rearrangements. Here, we used a unique approach exploiting conformation-specific and regio-specific synthetic antibodies (sABs) to probe the energetic contributions of ligand binding to conformation changes. Using maltose-binding protein (MBP) as a model system, customized phage-display selections were performed to generate sABs that stabilize MBP in different conformational states, modulating ligand-binding affinity in competitive, allosteric, or peristeric manners. We determined that the binding of a closed conformation-specific sAB (sAB-11M) to MBP in the absence of maltose is entropically driven, providing new insight into designing antibody-stabilized protein interactions. Crystal structures of sABs bound to MBP, together with biophysical data, delineate the basis of free energy differences between different conformational states and confirm the use of the sABs as energy probes for dissecting enthalpic and entropic contributions to conformational transitions. Our work provides a foundation for investigating the energetic contributions of distinct conformational dynamics to specific biological outputs. We anticipate that our approach also may be valuable for analyzing the energy landscapes of regulatory proteins controlling biological responses to environmental changes.
配体结合导致蛋白质构象变化在生物过程中普遍存在,是许多生物系统的重要组成部分。然而,将配体诱导的构象变化与产生的生物学功能联系起来通常具有挑战性,因为很难区分与配体结合相关的能量成分和结构重排的能量成分。在这里,我们使用了一种独特的方法,利用构象特异性和区域特异性合成抗体 (sAB) 来探测配体结合对构象变化的能量贡献。我们使用麦芽糖结合蛋白 (MBP) 作为模型系统,进行了定制的噬菌体展示选择,以产生稳定 MBP 处于不同构象状态的 sAB,以竞争性、别构或周向方式调节配体结合亲和力。我们确定,在没有麦芽糖的情况下,封闭构象特异性 sAB (sAB-11M) 与 MBP 的结合是熵驱动的,这为设计抗体稳定的蛋白质相互作用提供了新的见解。sAB 与 MBP 结合的晶体结构以及生物物理数据,描绘了不同构象状态之间自由能差异的基础,并证实了 sAB 可作为能量探针用于剖析构象转变的焓和熵贡献。我们的工作为研究不同构象动力学对特定生物学输出的能量贡献提供了基础。我们预计,我们的方法对于分析控制生物对环境变化反应的调节蛋白的能量景观也可能具有重要价值。