Gharaie Saleh Hassanzadeh, Mosadegh Bobak, Morsi Yosry
Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York Presbyterian Hospital & Weill Cornell Medicine, New York, NY, 10021, USA.
Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
Cardiovasc Eng Technol. 2018 Mar;9(1):42-52. doi: 10.1007/s13239-018-0340-7. Epub 2018 Jan 10.
This paper describes a computational method to simulate the non-linear structural deformation of a polymeric aortic valve under physiological conditions. Arbitrary Lagrangian-Eulerian method is incorporated in the fluid-structure interaction simulation, and then validated by comparing the predicted kinematics of the valve's leaflets to in vitro measurements on a custom-made polymeric aortic valve. The predicted kinematics of the valve's leaflets was in good agreement with the experimental results with a maximum error of 15% in a single cardiac cycle. The fluid-structure interaction model presented in this study can simulate structural behaviour of a stented valve with flexible leaflets, providing insight into the haemodynamic performance of a polymeric aortic valve.
本文描述了一种计算方法,用于模拟生理条件下聚合物主动脉瓣的非线性结构变形。在流固相互作用模拟中采用了任意拉格朗日-欧拉方法,然后通过将预测的瓣膜小叶运动学与定制聚合物主动脉瓣的体外测量结果进行比较来进行验证。瓣膜小叶的预测运动学与实验结果吻合良好,在单个心动周期中最大误差为15%。本研究中提出的流固相互作用模型可以模拟具有柔性小叶的带支架瓣膜的结构行为,从而深入了解聚合物主动脉瓣的血流动力学性能。