Suppr超能文献

贝叶斯诊断隐藏马尔可夫结构方程模型中的缺失数据。

Bayesian Diagnostics of Hidden Markov Structural Equation Models with Missing Data.

机构信息

a Department of Statistics , Sun Yat-sen University , Guangzhou , PR China.

b Department of Statistics , The Chinese University of Hong Kong , Hong Kong.

出版信息

Multivariate Behav Res. 2018 Mar-Apr;53(2):151-171. doi: 10.1080/00273171.2017.1407233. Epub 2018 Jan 11.

Abstract

Cocaine is a type of drug that functions to increase the availability of the neurotransmitter dopamine in the brain. However, cocaine dependence or abuse is highly related to an increased risk of psychiatric disorders and deficits in cognitive performance, attention, and decision-making abilities. Given the chronic and persistent features of drug addiction, the progression of abstaining from cocaine often evolves across several states, such as addiction to, moderate dependence on, and swearing off cocaine. Hidden Markov models (HMMs) are well suited to the characterization of longitudinal data in terms of a set of unobservable states, and have increasingly been used to uncover the dynamic heterogeneity in progressive diseases or activities. However, the existence of outliers or influential points may misidentify the hidden states and distort the associated inference. In this study, we develop a Bayesian local influence procedure for HMMs with latent variables in the presence of missing data. The proposed model enables us to investigate the dynamic heterogeneity of multivariate longitudinal data, reveal how the interrelationships among latent variables change from one state to another, and simultaneously conduct statistical diagnosis for the given data, model assumptions, and prior inputs. We apply the proposed procedure to analyze a dataset collected by the UCLA center for advancing longitudinal drug abuse research. Several outliers or influential points that seriously influence estimation results are identified and removed. The proposed procedure also discovers the effects of treatment and individuals' psychological problems on cocaine use behavior and delineates their dynamic changes across the cocaine-addiction states.

摘要

可卡因是一种能增加大脑中神经递质多巴胺含量的毒品。然而,可卡因依赖或滥用与精神障碍风险增加以及认知表现、注意力和决策能力缺陷高度相关。鉴于药物成瘾的慢性和持续性特征,戒断可卡因的过程通常会经历几个阶段,如成瘾、中度依赖和戒断可卡因。隐马尔可夫模型(HMM)非常适合根据一组不可观测状态来描述纵向数据,并且越来越多地被用于揭示进展性疾病或活动中的动态异质性。然而,异常值或有影响力的点的存在可能会错误识别隐藏状态并扭曲相关推断。在这项研究中,我们针对具有缺失数据的潜变量 HMM 开发了一种贝叶斯局部影响程序。所提出的模型使我们能够研究多元纵向数据的动态异质性,揭示潜在变量之间的关系如何从一个状态变化到另一个状态,并同时对给定数据、模型假设和先验输入进行统计诊断。我们将提出的程序应用于分析由加州大学洛杉矶分校成瘾纵向药物研究中心收集的数据集。识别并删除了几个严重影响估计结果的异常值或有影响力的点。该程序还发现了治疗和个体心理问题对可卡因使用行为的影响,并描绘了它们在可卡因成瘾状态下的动态变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验