Suppr超能文献

基于性场所的网络分析识别男男性行为者艾滋病预防传播目标。

Sex Venue-Based Network Analysis to Identify HIV Prevention Dissemination Targets for Men Who Have Sex with Men.

机构信息

1 Division of Infectious Diseases, Washington University in St. Louis , St. Louis, Missouri.

2 Center for Public Health Systems Science, Washington University in St. Louis , St. Louis, Missouri.

出版信息

LGBT Health. 2018 Jan;5(1):78-85. doi: 10.1089/lgbt.2017.0018.

Abstract

PURPOSE

The aim of this study was to identify sex venue-based networks among men who have sex with men (MSM) to inform HIV preexposure prophylaxis (PrEP) dissemination efforts.

METHODS

Using a cross-sectional design, we interviewed MSM about the venues where their recent sexual partners were found. Venues were organized into network matrices grouped by condom use and race. We examined network structure, central venues, and network subgroups.

RESULTS

Among 49 participants, the median age was 27 years, 49% were Black and 86% reported condomless anal sex (ncAS). Analysis revealed a map of 54 virtual and physical venues with an overlap in the ncAS and with condom anal sex (cAS) venues. In the ncAS network, virtual and physical locations were more interconnected. The ncAS venues reported by Blacks were more diffusely organized than those reported by Whites.

CONCLUSION

The network structures of sex venues for at-risk MSM differed by race. Network information can enhance HIV prevention dissemination efforts among subpopulations, including PrEP implementation.

摘要

目的

本研究旨在识别男男性行为者(MSM)的性场所网络,为 HIV 暴露前预防(PrEP)的推广提供信息。

方法

采用横断面设计,我们对 MSM 进行了访谈,了解他们最近的性伴侣是在哪里找到的。根据 condom use 和 race 将性场所组织成网络矩阵。我们检查了网络结构、核心场所和网络亚组。

结果

在 49 名参与者中,中位数年龄为 27 岁,49%为黑人,86%报告有过无保护肛交(ncAS)。分析显示,有 54 个虚拟和物理场所,与无保护肛交(ncAS)和有保护肛交(cAS)场所存在重叠。在 ncAS 网络中,虚拟和物理位置的联系更加紧密。黑人报告的 ncAS 场所比白人报告的 ncAS 场所组织更加分散。

结论

高危 MSM 的性场所网络结构因种族而异。网络信息可以加强针对特定人群的 HIV 预防传播工作,包括 PrEP 的实施。

相似文献

引用本文的文献

本文引用的文献

10
Social network analysis for program implementation.用于项目实施的社会网络分析
PLoS One. 2015 Jun 25;10(6):e0131712. doi: 10.1371/journal.pone.0131712. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验