Suppr超能文献

DNA错配修复基因在通过同源重组驱动I型进化中的作用。

Role of the DNA Mismatch Repair Gene in Driving the Evolution of Type I via Homologous Recombination.

作者信息

Kim Byoung-Jun, Kim Bo-Ram, Kook Yoon-Hoh, Kim Bum-Joon

机构信息

Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea.

出版信息

Front Microbiol. 2017 Dec 20;8:2578. doi: 10.3389/fmicb.2017.02578. eCollection 2017.

Abstract

We recently showed that could be divided into two genotypes: Type I, in which the gene has been transferred from , and Type II, in which the gene has not been transferred. Comparative genome analysis of three Type I, two Type II and type strains were performed in this study to gain insight into gene transfer from into Type I strains. We found two genome regions transferred from : one contained 3 consecutive genes, including the operon, and the other contained 57 consecutive genes that had been transferred into Type I genomes via homologous recombination. Further comparison between the Type I and II genomes revealed that Type I, but not Type II has a distinct DNA mismatch repair gene ( subfamily) that was possibly transferred via non-homologous recombination from other actinomycetes. We hypothesized that it could facilitate homologous recombination from the to the Type I genomes. We therefore generated recombinant containing a operon of . We found that the fragment with a rifampin resistance-conferring mutation was more frequently inserted into recombinant than the wild type, suggesting that MutS4 is a driving force in the gene transfer from to Type I strains via homologous recombination. In conclusion, our data indicated that MutS4 in Type I genomes may drive gene transfer from via homologous recombination, resulting in division of into two genotypes, Type I and II.

摘要

我们最近发现[具体内容]可分为两种基因型:I型,其中[具体基因]已从[来源]转移;II型,其中该基因未发生转移。本研究对三株I型[具体名称]、两株II型[具体名称]和[类型]菌株进行了比较基因组分析,以深入了解从[来源]到I型菌株的基因转移情况。我们发现了两个从[来源]转移的基因组区域:一个包含3个连续基因,包括[具体操纵子],另一个包含57个连续基因,这些基因通过同源重组转移到I型[具体名称]基因组中。I型和II型[具体名称]基因组的进一步比较显示,I型而非II型具有一个独特的DNA错配修复基因([具体亚家族]),该基因可能通过非同源重组从其他放线菌转移而来。我们推测它可能促进从[来源]到I型[具体名称]基因组的同源重组。因此,我们构建了含有[来源]的[具体操纵子]的重组[具体名称]。我们发现,带有赋予利福平抗性突变的[具体片段]比野生型更频繁地插入重组[具体名称]中,这表明MutS4是通过同源重组从[来源]到I型菌株进行基因转移的驱动力。总之,我们的数据表明,I型[具体名称]基因组中的MutS4可能通过同源重组驱动从[来源]的基因转移,导致[具体名称]分为I型和II型两种基因型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39ec/5742357/f61d3f79e183/fmicb-08-02578-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验