Author to whom any correspondence should be addressed.
Phys Med Biol. 2018 Feb 5;63(3):035034. doi: 10.1088/1361-6560/aaa71a.
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
定量形状比较是计算机视觉、几何处理和医学成像中的一个基本问题。在本文中,我们提出了一种基于谱图小波的方法,用于分析人类手腕的腕骨形状。我们通过离散域中拉普拉斯-贝尔特拉米算子的谱几何分析,利用谱图小波来表示腕骨的皮质表面。我们提出了全局谱图小波(GSGW)描述符,它具有等距不变性、计算效率高,并结合了低通和带通滤波器的优点。我们在来自公开腕骨数据库的十个女性和十个男性的腕骨形状上进行了实验。通过单向多元方差分析(MANOVA)和置换检验,我们通过广泛的实验表明,与全局点特征嵌入方法相比,所提出的 GSGW 框架在比较不同人群的腕骨形状方面具有更好的性能。