Suppr超能文献

用于分析双向反射分布函数估计的顺序拟合与分离反射分量

Sequential fitting-and-separating reflectance components for analytical bidirectional reflectance distribution function estimation.

作者信息

Lee Yu, Yu Chanki, Lee Sang Wook

出版信息

Appl Opt. 2018 Jan 10;57(2):242-250. doi: 10.1364/AO.57.000242.

Abstract

We present a sequential fitting-and-separating algorithm for surface reflectance components that separates individual dominant reflectance components and simultaneously estimates the corresponding bidirectional reflectance distribution function (BRDF) parameters from the separated reflectance values. We tackle the estimation of a Lafortune BRDF model, which combines a nonLambertian diffuse reflection and multiple specular reflectance components with a different specular lobe. Our proposed method infers the appropriate number of BRDF lobes and their parameters by separating and estimating each of the reflectance components using an interval analysis-based branch-and-bound method in conjunction with iterative K-ordered scale estimation. The focus of this paper is the estimation of the Lafortune BRDF model. Nevertheless, our proposed method can be applied to other analytical BRDF models such as the Cook-Torrance and Ward models. Experiments were carried out to validate the proposed method using isotropic materials from the Mitsubishi Electric Research Laboratories-Massachusetts Institute of Technology (MERL-MIT) BRDF database, and the results show that our method is superior to a conventional minimization algorithm.

摘要

我们提出了一种用于表面反射率分量的顺序拟合和分离算法,该算法可分离各个主要反射率分量,并同时根据分离出的反射率值估计相应的双向反射分布函数(BRDF)参数。我们处理Lafortune BRDF模型的估计问题,该模型将非朗伯漫反射和具有不同镜面波瓣的多个镜面反射分量结合在一起。我们提出的方法通过使用基于区间分析的分支定界方法结合迭代K阶尺度估计来分离和估计每个反射率分量,从而推断出BRDF波瓣的适当数量及其参数。本文的重点是Lafortune BRDF模型的估计。然而,我们提出的方法可以应用于其他分析性BRDF模型,如Cook-Torrance模型和Ward模型。我们使用来自三菱电机研究实验室 - 麻省理工学院(MERL-MIT)BRDF数据库的各向同性材料进行了实验,以验证所提出的方法,结果表明我们的方法优于传统的最小化算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验