Tan Sisi, Wei Xiaoming, Wu Jianglai, Yang Lingxiao, Tsia Kevin K, Wong Kenneth K Y
Opt Lett. 2018 Jan 1;43(1):102-105. doi: 10.1364/OL.43.000102.
Dispersive pulse-stretching at 2.0 μm has long been hindered by the high intrinsic optical loss from conventional dispersive media. Here a flexible pulse-stretching technique at 2.0 μm is demonstrated over a broad bandwidth with large-scale dispersion and low intrinsic optical loss. The technique employs the newly proposed pulse-stretching scheme, namely, free-space angular-chirp-enhanced delay. Both normal and anomalous temporal dispersion (up to ±500 ps/nm) with low intrinsic loss (<6 dB) over a spectral bandwidth of ∼84 nm at 2.0 μm is obtained with low nonlinear effects. Based on this method, an optical wavelength-swept source at 2.0 μm is realized and applied to spectrally encoded imaging at a line scan rate of ∼19 MHz, proving the potential of this pulse-stretching technique for continuous single-shot measurements at the 2.0 μm wavelength regime, particularly for optical microscopy and spectroscopy.
长期以来,2.0微米波长处的色散脉冲展宽一直受到传统色散介质高固有光学损耗的阻碍。在此展示了一种灵活的2.0微米波长脉冲展宽技术,该技术在宽频带上具有大规模色散且固有光学损耗低。该技术采用了新提出的脉冲展宽方案,即自由空间角啁啾增强延迟。在2.0微米波长处约84纳米的光谱带宽内,实现了具有低固有损耗(<6分贝)的正常和反常时间色散(高达±500皮秒/纳米),且非线性效应较低。基于此方法,实现了一个2.0微米波长的光学扫频光源,并将其应用于线扫描速率约为19兆赫兹的光谱编码成像,证明了这种脉冲展宽技术在2.0微米波长区域进行连续单次测量的潜力,特别是在光学显微镜和光谱学方面。