Suppr超能文献

与全国代表性调查相比,亚马逊土耳其机器人受访者自我报告的健康状况有所不同。

Self-reported Health Status Differs for Amazon's Mechanical Turk Respondents Compared With Nationally Representative Surveys.

机构信息

Department of Health Sector Management and Policy, University of Miami School of Business Administration, Coral Gables, FL.

Department of Economics, University of Pennsylvania, Philadelphia, PA.

出版信息

Med Care. 2018 Mar;56(3):211-215. doi: 10.1097/MLR.0000000000000871.

Abstract

BACKGROUND

Amazon's Mechanical Turk (MTurk) platform has become a data source for peer-reviewed academic research publications, with over 24,000 Google Scholar search results. Although well-developed and supportive in other disciplines, the literature in health and medicine comparing results from samples generated on MTurk to gold standard, nationally representative health and medical surveys is beginning to emerge.

OBJECTIVE

To compare the demographic, socioeconomic, and self-reported health status variables in an MTurk sample to those from 2 prominent national probability surveys, including the Medical Expenditure Panel Survey (MEPS) and the Behavioral Risk Factor Surveillance System (BRFSS).

RESEARCH DESIGN

We analyze weighted and unweighted tabulations of the MTurk, MEPS, and BRFSS. Wald tests identify statistical significance.

MEASURES

Demographic, socioeconomic, and health status variables in an adult MTurk sample collected in 2016 (n=1916), the 2015 MEPS household survey component (n=21,210), and the 2015 BRFSS (n=283,502).

RESULTS

Our findings indicate statistically significant differences in the demographic, socioeconomic, and self-perceived health status tabulations in the MTurk sample relative to the unweighted and weighted MEPS and BRFSS. The MTurk sample is more likely to be female (65.8% in MTurk, 50.9% in MEPS, 50.2% in BRFSS), white (80.1% in MTurk, 76.9% in MEPS, and 73.9% in BRFSS), non-Hispanic (91.1%, 82.4%, and 81.4%, respectively), younger, and less likely to report excellent health status (6.8% in MTurk, 28.3% in MEPS, and 20.2% in BRFSS).

CONCLUSIONS

We find significant differences across variables that warrant hesitation in using MTurk data as a replacement for the gold standard datasets in health services research.

摘要

背景

亚马逊的 Mechanical Turk(MTurk)平台已成为同行评审学术研究出版物的数据源,在 Google Scholar 上的搜索结果超过 24000 条。尽管在其他学科中已经得到了很好的开发和支持,但在健康和医学领域,将 MTurk 生成的样本结果与黄金标准、全国代表性的健康和医学调查进行比较的文献才刚刚开始出现。

目的

将 MTurk 样本中的人口统计学、社会经济学和自我报告的健康状况变量与两项著名的全国概率调查(包括医疗支出面板调查(MEPS)和行为风险因素监测系统(BRFSS))进行比较。

研究设计

我们分析了 2016 年 MTurk、MEPS 和 BRFSS 的加权和未加权表格。Wald 检验确定了统计学意义。

测量指标

2016 年 MTurk 样本(n=1916)、2015 年 MEPS 家庭调查部分(n=21210)和 2015 年 BRFSS(n=283502)中的成人 MTurk 样本中的人口统计学、社会经济学和自我感知健康状况变量。

结果

我们的研究结果表明,在 MTurk 样本的人口统计学、社会经济学和自我感知健康状况的表格中,与未加权和加权的 MEPS 和 BRFSS 相比,存在统计学上的显著差异。MTurk 样本更有可能是女性(65.8%在 MTurk,50.9%在 MEPS,50.2%在 BRFSS)、白人(80.1%在 MTurk,76.9%在 MEPS,73.9%在 BRFSS)、非西班牙裔(91.1%,82.4%和 81.4%,分别)、年轻和不太可能报告优秀的健康状况(6.8%在 MTurk,28.3%在 MEPS,20.2%在 BRFSS)。

结论

我们发现变量之间存在显著差异,这使得在健康服务研究中使用 MTurk 数据替代黄金标准数据集时需要谨慎。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验