Jackson Ariel, Strickler Alaina, Higgins Drew, Jaramillo Thomas Francisco
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Nanomaterials (Basel). 2018 Jan 12;8(1):38. doi: 10.3390/nano8010038.
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.
提高氧还原反应(ORR)电催化剂的性能对于包括低温聚合物电解质燃料电池(PEFC)在内的许多可再生能源技术的商业效能至关重要。在此,我们报道了通过湿化学合成技术制备的高活性且稳定的碳载Ru@Pt核壳纳米颗粒(Ru@Pt/C)。通过旋转圆盘电极测试,Ru@Pt/C在相对于可逆氢电极(RHE)为0.9 V时实现了基于Pt质量的ORR活性为0.50 A mg,超过了最先进的商业Pt/C催化剂的活性以及美国能源部2020年用于交通运输应用的PEFC电催化剂活性目标。我们深入探究了各种合成参数的影响,包括Pt与Ru的比例以及催化剂预处理(即退火)。在所研究的组成范围内,发现所有制备的Ru@Pt/C催化剂的基于Pt的质量活性均超过0.4 mg,其中活性最高的催化剂的Ru:Pt比例为1:1。这种优化组成的Ru@Pt/C催化剂在30,000次加速耐久性循环(在125 mV s下从0.6 V至1.0 V相对于RHE)后表现出卓越的稳定性,保持了其初始质量活性的85%。在电化学测试的各个阶段进行的扫描透射电子显微镜能量色散光谱(STEM-EDS)分析表明,Pt壳能够为原本不稳定的Ru核提供足够的保护以防止其溶解。