Suppr超能文献

个体患者数据共享时代的随机临床试验的荟萃分析。

Meta-analysis of randomized clinical trials in the era of individual patient data sharing.

机构信息

Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Annex of Bldg. 3, 5th Floor, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Astellas Pharma Inc., Tokyo, 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8411, Japan.

出版信息

Int J Clin Oncol. 2018 Jun;23(3):403-409. doi: 10.1007/s10147-018-1237-z. Epub 2018 Jan 12.

Abstract

BACKGROUND

Individual patient data (IPD) meta-analysis is considered to be a gold standard when the results of several randomized trials are combined. Recent initiatives on sharing IPD from clinical trials offer unprecedented opportunities for using such data in IPD meta-analyses.

METHODS

First, we discuss the evidence generated and the benefits obtained by a long-established prospective IPD meta-analysis in early breast cancer. Next, we discuss a data-sharing system that has been adopted by several pharmaceutical sponsors. We review a number of retrospective IPD meta-analyses that have already been proposed using this data-sharing system. Finally, we discuss the role of data sharing in IPD meta-analysis in the future.

RESULTS

Treatment effects can be more reliably estimated in both types of IPD meta-analyses than with summary statistics extracted from published papers. Specifically, with rich covariate information available on each patient, prognostic and predictive factors can be identified or confirmed. Also, when several endpoints are available, surrogate endpoints can be assessed statistically.

CONCLUSIONS

Although there are difficulties in conducting, analyzing, and interpreting retrospective IPD meta-analysis utilizing the currently available data-sharing systems, data sharing will play an important role in IPD meta-analysis in the future.

摘要

背景

当合并几项随机试验的结果时,个体患者数据(IPD)荟萃分析被认为是金标准。最近关于分享临床试验 IPD 的倡议为在 IPD 荟萃分析中使用此类数据提供了前所未有的机会。

方法

首先,我们讨论了一项长期前瞻性 IPD 荟萃分析在早期乳腺癌中产生的证据和获得的益处。接下来,我们讨论了几个制药赞助商采用的数据共享系统。我们回顾了已经使用该数据共享系统提出的一些回顾性 IPD 荟萃分析。最后,我们讨论了未来数据共享在 IPD 荟萃分析中的作用。

结果

在这两种类型的 IPD 荟萃分析中,治疗效果的估计比从已发表论文中提取的汇总统计数据更可靠。具体来说,通过对每个患者的丰富协变量信息,可识别或确认预后和预测因素。此外,当有多个终点时,可以对替代终点进行统计学评估。

结论

尽管利用现有的数据共享系统进行回顾性 IPD 荟萃分析存在困难,但在未来,数据共享将在 IPD 荟萃分析中发挥重要作用。

相似文献

引用本文的文献

本文引用的文献

5
Data Sharing - Is the Juice Worth the Squeeze?数据共享——挤出来的汁值得吗?
N Engl J Med. 2016 Oct 27;375(17):1608-1609. doi: 10.1056/NEJMp1610336.
6
Data Sharing at a Crossroads.数据共享处于十字路口。
N Engl J Med. 2016 Sep 22;375(12):1115-7. doi: 10.1056/NEJMp1608086.
7
Incentives for Clinical Trialists to Share Data.鼓励临床试验人员共享数据的激励措施。
N Engl J Med. 2016 Sep 22;375(12):1112-5. doi: 10.1056/NEJMp1608351.
9
A Global, Neutral Platform for Sharing Trial Data.一个用于共享试验数据的全球中立平台。
N Engl J Med. 2016 Jun 23;374(25):2411-3. doi: 10.1056/NEJMp1605348. Epub 2016 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验