Suppr超能文献

基于最优标度形态学分析方法的滚动轴承故障诊断。

Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.

机构信息

School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China.

School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China.

出版信息

ISA Trans. 2018 Feb;73:165-180. doi: 10.1016/j.isatra.2018.01.004. Epub 2018 Jan 10.

Abstract

Periodic transient impulses are key indicators of rolling element bearing defects. Efficient acquisition of impact impulses concerned with the defects is of much concern to the precise detection of bearing defects. However, transient features of rolling element bearing are generally immersed in stochastic noise and harmonic interference. Therefore, in this paper, a new optimal scale morphology analysis method, named adaptive multiscale combination morphological filter-hat transform (AMCMFH), is proposed for rolling element bearing fault diagnosis, which can both reduce stochastic noise and reserve signal details. In this method, firstly, an adaptive selection strategy based on the feature energy factor (FEF) is introduced to determine the optimal structuring element (SE) scale of multiscale combination morphological filter-hat transform (MCMFH). Subsequently, MCMFH containing the optimal SE scale is applied to obtain the impulse components from the bearing vibration signal. Finally, fault types of bearing are confirmed by extracting the defective frequency from envelope spectrum of the impulse components. The validity of the proposed method is verified through the simulated analysis and bearing vibration data derived from the laboratory bench. Results indicate that the proposed method has a good capability to recognize localized faults appeared on rolling element bearing from vibration signal. The study supplies a novel technique for the detection of faulty bearing.

摘要

周期性瞬态脉冲是滚动轴承缺陷的关键指标。高效获取与缺陷相关的冲击脉冲是精确检测轴承缺陷的关键。然而,滚动轴承的瞬态特征通常会被随机噪声和谐波干扰所淹没。因此,本文提出了一种新的最优尺度形态分析方法,称为自适应多尺度组合形态滤波器-帽变换(AMCMFH),用于滚动轴承故障诊断,该方法既能降低随机噪声,又能保留信号细节。在该方法中,首先引入了一种基于特征能量因子(FEF)的自适应选择策略,以确定多尺度组合形态滤波器-帽变换(MCMFH)的最优结构元素(SE)尺度。随后,应用包含最优 SE 尺度的 MCMFH 从轴承振动信号中获取冲击分量。最后,通过提取冲击分量包络谱中的缺陷频率来确定轴承的故障类型。通过模拟分析和实验室台架上获得的轴承振动数据验证了所提出方法的有效性。结果表明,该方法能够从振动信号中识别出滚动轴承上出现的局部故障,为故障轴承的检测提供了一种新的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验