理解与误解随机对照试验。

Understanding and misunderstanding randomized controlled trials.

机构信息

Princeton University, USA; National Bureau of Economic Research, USA; University of Southern California, USA.

Durham University, England; UC San Diego, USA.

出版信息

Soc Sci Med. 2018 Aug;210:2-21. doi: 10.1016/j.socscimed.2017.12.005. Epub 2017 Dec 25.

Abstract

Randomized Controlled Trials (RCTs) are increasingly popular in the social sciences, not only in medicine. We argue that the lay public, and sometimes researchers, put too much trust in RCTs over other methods of investigation. Contrary to frequent claims in the applied literature, randomization does not equalize everything other than the treatment in the treatment and control groups, it does not automatically deliver a precise estimate of the average treatment effect (ATE), and it does not relieve us of the need to think about (observed or unobserved) covariates. Finding out whether an estimate was generated by chance is more difficult than commonly believed. At best, an RCT yields an unbiased estimate, but this property is of limited practical value. Even then, estimates apply only to the sample selected for the trial, often no more than a convenience sample, and justification is required to extend the results to other groups, including any population to which the trial sample belongs, or to any individual, including an individual in the trial. Demanding 'external validity' is unhelpful because it expects too much of an RCT while undervaluing its potential contribution. RCTs do indeed require minimal assumptions and can operate with little prior knowledge. This is an advantage when persuading distrustful audiences, but it is a disadvantage for cumulative scientific progress, where prior knowledge should be built upon, not discarded. RCTs can play a role in building scientific knowledge and useful predictions but they can only do so as part of a cumulative program, combining with other methods, including conceptual and theoretical development, to discover not 'what works', but 'why things work'.

摘要

随机对照试验(RCT)在社会科学中越来越受欢迎,不仅在医学领域。我们认为,普通公众,有时甚至是研究人员,对 RCT 过于信任,而对其他调查方法则缺乏信任。与应用文献中频繁出现的观点相反,随机化并不能使处理组和对照组除处理因素以外的所有因素都均衡,它不能自动提供治疗效果平均值(ATE)的精确估计,也不能使我们不必考虑(观察到或未观察到的)协变量。要确定估计值是否是偶然产生的,比人们普遍认为的要困难。在最好的情况下,RCT 可以产生无偏估计,但这种性质在实际应用中价值有限。即使如此,估计值仅适用于为试验选择的样本,通常只是一个方便样本,需要证明将结果扩展到其他组,包括试验样本所属的任何群体,或者扩展到任何个体,包括试验中的个体。要求“外部有效性”是没有帮助的,因为它对 RCT 期望过高,而对其潜在贡献评价过低。RCT 确实需要最小的假设,并且可以在很少的先验知识的情况下进行操作。当说服不信任的受众时,这是一个优势,但对于累积的科学进步来说,这是一个劣势,因为应该在已有知识的基础上进行,而不是抛弃它。RCT 可以在建立科学知识和有用的预测方面发挥作用,但它们只能作为累积计划的一部分,与其他方法(包括概念和理论发展)结合使用,以发现的不是“什么有效”,而是“为什么有效”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索