Suppr超能文献

利用队列研究与行政索赔数据的关联来识别癌症患者。

Leveraging Linkage of Cohort Studies With Administrative Claims Data to Identify Individuals With Cancer.

机构信息

The Dartmouth Institute for Health Policy and Clinical Practice.

Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH.

出版信息

Med Care. 2018 Dec;56(12):e83-e89. doi: 10.1097/MLR.0000000000000875.

Abstract

BACKGROUND

In an effort to overcome quality and cost constraints inherent in population-based research, diverse data sources are increasingly being combined. In this paper, we describe the performance of a Medicare claims-based incident cancer identification algorithm in comparison with observational cohort data from the Nurses' Health Study (NHS).

METHODS

NHS-Medicare linked participants' claims data were analyzed using 4 versions of a cancer identification algorithm across 3 cancer sites (breast, colorectal, and lung). The algorithms evaluated included an update of the original Setoguchi algorithm, and 3 other versions that differed in the data used for prevalent cancer exclusions.

RESULTS

The algorithm that yielded the highest positive predictive value (PPV) (0.52-0.82) and κ statistic (0.62-0.87) in identifying incident cancer cases utilized both Medicare claims and observational cohort data (NHS) to remove prevalent cases. The algorithm that only used NHS data to inform the removal of prevalent cancer cases performed nearly equivalently in statistical performance (PPV, 0.50-0.79; κ, 0.61-0.85), whereas the version that used only claims to inform the removal of prevalent cancer cases performed substantially worse (PPV, 0.42-0.60; κ, 0.54-0.70), in comparison with the dual data source-informed algorithm.

CONCLUSIONS

Our findings suggest claims-based algorithms identify incident cancer with variable reliability when measured against an observational cohort study reference standard. Self-reported baseline information available in cohort studies is more effective in removing prevalent cancer cases than are claims data algorithms. Use of claims-based algorithms should be tailored to the research question at hand and the nature of available observational cohort data.

摘要

背景

为了克服基于人群的研究中固有的质量和成本限制,越来越多的不同数据源正在被整合。在本文中,我们描述了一种基于医疗保险索赔的癌症识别算法的性能,该算法与护士健康研究(NHS)的观察队列数据进行了比较。

方法

使用 4 种癌症识别算法版本(乳腺癌、结直肠癌和肺癌)对 NHS-医疗保险链接参与者的索赔数据进行了分析。评估的算法包括原始 Setoguchi 算法的更新版本,以及另外 3 种在用于排除现有癌症的数据集方面存在差异的版本。

结果

在识别新发癌症病例方面,产生最高阳性预测值(PPV)(0.52-0.82)和κ统计量(0.62-0.87)的算法利用了医疗保险索赔数据和观察队列数据(NHS)来排除现有病例。仅使用 NHS 数据来告知排除现有癌症病例的算法在统计性能方面表现相当(PPV,0.50-0.79;κ,0.61-0.85),而仅使用索赔数据来告知排除现有癌症病例的算法的性能则明显较差(PPV,0.42-0.60;κ,0.54-0.70),与双数据源告知的算法相比。

结论

我们的研究结果表明,与观察性队列研究参考标准相比,基于索赔的算法在识别新发癌症方面的可靠性存在差异。队列研究中可用的基于自我报告的基线信息比索赔数据算法更有效地排除现有癌症病例。基于索赔的算法的使用应根据手头的研究问题和可用观察性队列数据的性质进行调整。

相似文献

1
2
An algorithm for the use of Medicare claims data to identify women with incident breast cancer.
Health Serv Res. 2004 Dec;39(6 Pt 1):1733-49. doi: 10.1111/j.1475-6773.2004.00315.x.
4
Evaluation of three algorithms to identify incident breast cancer in Medicare claims data.
Health Serv Res. 2007 Oct;42(5):2056-69. doi: 10.1111/j.1475-6773.2007.00705.x.
5
A refined comorbidity measurement algorithm for claims-based studies of breast, prostate, colorectal, and lung cancer patients.
Ann Epidemiol. 2007 Aug;17(8):584-90. doi: 10.1016/j.annepidem.2007.03.011. Epub 2007 May 25.
6
Limited validity of diagnosis codes in Medicare claims for identifying cancer metastases and inferring stage.
Ann Epidemiol. 2014 Sep;24(9):666-72, 672.e1-2. doi: 10.1016/j.annepidem.2014.06.099. Epub 2014 Jul 3.
7
Accuracy of Medicare Claim-based Algorithm to Detect Breast, Prostate, or Lung Cancer Bone Metastases.
Med Care. 2017 Dec;55(12):e144-e149. doi: 10.1097/MLR.0000000000000539.
8
Algorithm to Identify Incident Epithelial Ovarian Cancer Cases Using Claims Data.
JCO Clin Cancer Inform. 2022 Mar;6:e2100187. doi: 10.1200/CCI.21.00187.
9
The Design and Validation of a New Algorithm to Identify Incident Fractures in Administrative Claims Data.
J Bone Miner Res. 2019 Oct;34(10):1798-1807. doi: 10.1002/jbmr.3807. Epub 2019 Aug 5.
10
Development and validation of coding algorithms to identify patients with incident lung cancer in United States healthcare claims data.
Pharmacoepidemiol Drug Saf. 2020 Nov;29(11):1465-1479. doi: 10.1002/pds.5137. Epub 2020 Oct 4.

引用本文的文献

1
Antidepressant Use Trajectories and Risk of Discontinuation After Adolescents and Young Adult Cancer Diagnosis.
Pharmacoepidemiol Drug Saf. 2025 Apr;34(4):e70131. doi: 10.1002/pds.70131.
2
Cross-State Travel for Cancer Care and Implications for Telehealth Reciprocity.
JAMA Netw Open. 2025 Feb 3;8(2):e2461021. doi: 10.1001/jamanetworkopen.2024.61021.
3
Associations Between Oncology Outreach and Patient-Sharing Measures of Care Coordination.
Cancer Med. 2024 Dec;13(23):e70489. doi: 10.1002/cam4.70489.
4
Oncology Physician Turnover in the United States Based on Medicare Claims Data.
Med Care. 2025 Jan 1;63(1):62-69. doi: 10.1097/MLR.0000000000002080. Epub 2024 Oct 30.
5
Travel burden and bypassing closest site for surgical cancer treatment for urban and rural oncology patients.
J Rural Health. 2025 Mar;41(2):e12890. doi: 10.1111/jrh.12890. Epub 2024 Oct 12.
6
Surgeon and Care Team Network Measures and Timely Breast Cancer Treatment.
JAMA Netw Open. 2024 Aug 1;7(8):e2427451. doi: 10.1001/jamanetworkopen.2024.27451.
7
The Association Between Oncology Outreach and Timely Treatment for Rural Patients with Breast Cancer: A Claims-Based Approach.
Ann Surg Oncol. 2024 Jul;31(7):4349-4360. doi: 10.1245/s10434-024-15195-y. Epub 2024 Mar 27.
8
Characterizing the Traveling Oncology Workforce and Its Influence on Patient Travel Burden: A Claims-Based Approach.
JCO Oncol Pract. 2024 Jun;20(6):787-796. doi: 10.1200/OP.23.00690. Epub 2024 Feb 22.
9
Comparison of US Oncologist Rurality by Practice Setting and Patients Served.
JAMA Netw Open. 2024 Jan 2;7(1):e2350504. doi: 10.1001/jamanetworkopen.2023.50504.
10
The Association of Rural Residence With Surgery and Adjuvant Radiation in Medicare Beneficiaries With Rectal Cancer.
Adv Radiat Oncol. 2023 Jun 8;8(6):101286. doi: 10.1016/j.adro.2023.101286. eCollection 2023 Nov-Dec.

本文引用的文献

1
Cancer incidence among US Medicare ESRD patients receiving hemodialysis, 1996-2009.
Am J Kidney Dis. 2015 May;65(5):763-72. doi: 10.1053/j.ajkd.2014.12.013. Epub 2015 Feb 7.
3
Estimation of national colorectal-cancer incidence using claims databases.
J Cancer Epidemiol. 2012;2012:298369. doi: 10.1155/2012/298369. Epub 2012 Jun 26.
5
Breast cancer incidence using administrative data: correction with sensitivity and specificity.
J Clin Epidemiol. 2009 Jun;62(6):660-6. doi: 10.1016/j.jclinepi.2008.07.013. Epub 2008 Dec 12.
6
A high positive predictive value algorithm using hospital administrative data identified incident cancer cases.
J Clin Epidemiol. 2008 Apr;61(4):373-9. doi: 10.1016/j.jclinepi.2007.05.017. Epub 2007 Oct 22.
7
Evaluation of three algorithms to identify incident breast cancer in Medicare claims data.
Health Serv Res. 2007 Oct;42(5):2056-69. doi: 10.1111/j.1475-6773.2007.00705.x.
8
Agreement of diagnosis and its date for hematologic malignancies and solid tumors between medicare claims and cancer registry data.
Cancer Causes Control. 2007 Jun;18(5):561-9. doi: 10.1007/s10552-007-0131-1. Epub 2007 Apr 19.
9
An algorithm for the use of Medicare claims data to identify women with incident breast cancer.
Health Serv Res. 2004 Dec;39(6 Pt 1):1733-49. doi: 10.1111/j.1475-6773.2004.00315.x.
10
Evaluation of an algorithm to identify incident breast cancer cases using DRGs data.
Eur J Cancer Prev. 2003 Aug;12(4):295-9. doi: 10.1097/00008469-200308000-00009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验