Zhou Qian M, Dai Wei, Zheng Yingye, Cai Tianxi
Department of Mathematics and Statistics, Mississippi State University, Mississippi State, Mississippi, USA, 39762.
Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA, 02115.
Stat Theory Relat Fields. 2017;1(2):159-170. doi: 10.1080/24754269.2017.1400418. Epub 2017 Nov 27.
Providing accurate and dynamic age-specific risk prediction is a crucial step in precision medicine. In this manuscript, we introduce an approach for estimating the -year age-specific absolute risk directly via a flexible varying coefficient model. The approach facilitates the utilization of predictors varying over an individual's lifetime. By using a nonparametric inverse probability weighted kernel estimating equation, the age-specific effects of risk factors are estimated without requiring the specification of the functional form. The approach allows borrowing information across individuals of similar ages, and therefore provides a practical solution for situations where the longitudinal information is only measured sparsely. We evaluate the performance of the proposed estimation and inference procedures with numerical studies, and make comparisons with existing methods in the literature. We illustrate the performance of our proposed approach by developing a dynamic prediction model using data from the Framingham Study.
提供准确且动态的特定年龄风险预测是精准医学中的关键一步。在本手稿中,我们介绍一种通过灵活的可变系数模型直接估计特定年龄绝对风险的方法。该方法有助于利用个体一生中变化的预测因子。通过使用非参数逆概率加权核估计方程,无需指定函数形式即可估计风险因素的特定年龄效应。该方法允许在相似年龄的个体间借用信息,因此为纵向信息仅稀疏测量的情况提供了一种实际解决方案。我们通过数值研究评估所提出的估计和推断程序的性能,并与文献中的现有方法进行比较。我们通过使用弗明汉姆研究的数据开发动态预测模型来说明我们所提出方法的性能。