Blanche Paul, Dartigues Jean-François, Jacqmin-Gadda Hélène
University Bordeaux, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France; INSERM, ISPED, Centre INSERM U897-Epidémiologie-Biostatistique, F-33000 Bordeaux, France.
Stat Med. 2013 Dec 30;32(30):5381-97. doi: 10.1002/sim.5958. Epub 2013 Sep 12.
The area under the time-dependent ROC curve (AUC) may be used to quantify the ability of a marker to predict the onset of a clinical outcome in the future. For survival analysis with competing risks, two alternative definitions of the specificity may be proposed depending of the way to deal with subjects who undergo the competing events. In this work, we propose nonparametric inverse probability of censoring weighting estimators of the AUC corresponding to these two definitions, and we study their asymptotic properties. We derive confidence intervals and test statistics for the equality of the AUCs obtained with two markers measured on the same subjects. A simulation study is performed to investigate the finite sample behaviour of the test and the confidence intervals. The method is applied to the French cohort PAQUID to compare the abilities of two psychometric tests to predict dementia onset in the elderly accounting for death without dementia competing risk. The 'timeROC' R package is provided to make the methodology easily usable.
时间依赖型ROC曲线下面积(AUC)可用于量化标志物预测未来临床结局发生的能力。对于存在竞争风险的生存分析,根据处理发生竞争事件受试者的方式,可提出两种特异性的替代定义。在本研究中,我们针对这两种定义提出了AUC的非参数逆概率删失加权估计量,并研究了它们的渐近性质。我们推导了在同一受试者上测量的两个标志物所获得的AUC相等性的置信区间和检验统计量。进行了一项模拟研究以考察检验和置信区间的有限样本行为。该方法应用于法国PAQUID队列,以比较两种心理测量测试在考虑无痴呆死亡这一竞争风险的情况下预测老年人痴呆发病的能力。提供了“timeROC”R包以便于使用该方法。