López E R, Fandiño O, Cabaleiro D, Lugo L, Fernández J
Laboratorio de Propiedades Termofísicas, Grupo NaFoMat, Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
Phys Chem Chem Phys. 2018 Jan 31;20(5):3531-3542. doi: 10.1039/c7cp07180a.
Reliable equations of state (EoS) together with heat capacities at atmospheric pressure make it possible to determine properties such as the isobaric thermal expansivity, compressibility, both isothermal and isentropic, high pressure isobaric heat capacities or speed of sound. In this work, we analysed the reliability of two density scaling based EoS, Power-Law Density Scaling (PLDS) and General Density Scaling (GDS), and the Tammann-Tait EoS to determine these quantities. For this aim, dipentaerythritol hexa(3,5,5-trimethylhexanoate), diPEiC, was chosen because it has been recently proposed as a candidate to fill the gap of reference fluids suitable for high pressure viscometer calibration or their verification. New experimental densities measured between (283.15 and 398.15) K at pressures up to 70 MPa together with isobaric heat capacities between (282.93 and 399.92) K and thermal conductivities between (283 and 333) K at 0.1 MPa of diPEiC are reported. Literature relative volumes up to 400 MPa for this compound were also used. The three EoSs give rise to coherent values of the above properties. The most difficult property to describe is isobaric thermal expansivity for which the isobaric curves can present minima and/or maxima and the isotherm curves can cross at different pressures. The loci of the maxima of the isobaric thermal expansivity in p-T diagrams of the GDS and PLDS EoSs are very close.
可靠的状态方程(EoS)以及常压下的热容使得确定诸如等压热膨胀系数、压缩性(包括等温压缩性和等熵压缩性)、高压等压热容或声速等性质成为可能。在这项工作中,我们分析了两种基于密度标度的状态方程——幂律密度标度(PLDS)和通用密度标度(GDS)以及Tammann-Tait状态方程在确定这些量时的可靠性。为此,选择了二季戊四醇六(3,5,5-三甲基己酸酯)(diPEiC),因为最近有人提议将其作为填补适用于高压粘度计校准或验证的参考流体空白的候选物。报告了在(283.15至398.15)K温度范围内、高达70 MPa压力下测量的diPEiC的新实验密度,以及在0.1 MPa压力下(282.93至399.92)K温度范围内的等压热容和(283至333)K温度范围内的热导率。还使用了该化合物高达400 MPa的文献相对体积。这三种状态方程给出了上述性质的连贯值。最难描述的性质是等压热膨胀系数,其等压曲线可能出现最小值和/或最大值,等温曲线可能在不同压力下交叉。GDS和PLDS状态方程的p-T图中等压热膨胀系数最大值的轨迹非常接近。