Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States.
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China.
ACS Appl Mater Interfaces. 2018 Feb 7;10(5):4614-4621. doi: 10.1021/acsami.7b14383. Epub 2018 Jan 16.
Morpho sulkowskyi butterfly wings contain naturally occurring hierarchical nanostructures that produce structural coloration. The high aspect ratio and surface area of these wings make them attractive nanostructured templates for applications in solar energy and photocatalysis. However, biomimetic approaches to replicate their complex structural features and integrate functional materials into their three-dimensional framework are highly limited in precision and scalability. Herein, a biotemplating approach is presented that precisely replicates Morpho nanostructures by depositing nanocrystalline ZnO coatings onto wings via low-temperature atomic layer deposition (ALD). This study demonstrates the ability to precisely tune the natural structural coloration while also integrating multifunctionality by imparting photocatalytic activity onto fully intact Morpho wings. Optical spectroscopy and finite-difference time-domain numerical modeling demonstrate that ALD ZnO coatings can rationally tune the structural coloration across the visible spectrum. These structurally colored photocatalysts exhibit an optimal coating thickness to maximize photocatalytic activity, which is attributed to trade-offs between light absorption and catalytic quantum yield with increasing coating thickness. These multifunctional photocatalysts present a new approach to integrating solar energy harvesting into visually attractive surfaces that can be integrated into building facades or other macroscopic structures to impart aesthetic appeal.
苏鲁克沃斯基凤蝶翅膀含有天然存在的分层纳米结构,可产生结构色。这些翅膀的高纵横比和表面积使它们成为太阳能和光催化应用中具有吸引力的纳米结构模板。然而,仿生方法在精确复制其复杂结构特征和将功能材料集成到其三维框架方面受到高度限制,在精确性和可扩展性方面都存在局限。本文提出了一种通过低温原子层沉积(ALD)将纳米晶 ZnO 涂层沉积到翅膀上来精确复制 Morpho 纳米结构的生物模板方法。该研究展示了通过赋予完全完整的 Morpho 翅膀光催化活性来精确调整自然光致变色的能力,同时还集成了多功能性。光谱和有限差分时域数值模拟表明,ALD ZnO 涂层可以在整个可见光谱范围内合理地调节结构色。这些结构着色光催化剂表现出最佳的涂层厚度,以最大限度地提高光催化活性,这归因于随着涂层厚度的增加,光吸收和催化量子产率之间的权衡。这些多功能光催化剂为将太阳能收集到视觉上吸引人的表面提供了一种新方法,这些表面可以集成到建筑外墙或其他宏观结构中,以赋予美学吸引力。