Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, Karlsruhe, D-76131, Germany.
Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien, 97401, Taiwan.
Nat Commun. 2018 Jan 16;9(1):232. doi: 10.1038/s41467-017-02676-w.
Full-spectrum utilization of diffusive solar energy by a photocatalyst for environmental remediation and fuel generation has long been pursued. In contrast to tremendous efforts in the UV-to-VIS light regime of the solar spectrum, the NIR and IR areas have been barely addressed although they represent about 50% of the solar flux. Here we put forward a biomimetic photocatalyst blueprint that emulates the growth pattern of a natural plant-a peapod-to address this issue. This design is exemplified via unidirectionally seeding core-shell Au@Nb nanoparticles in the cavity of semiconducting H KNbO nanoscrolls. The biomimicry of this nanopeapod (NPP) configuration promotes near-field plasmon-plasmon coupling between bimetallic Au@Nb nanoantennas (the peas), endowing the UV-active H KNbO semiconductor (the pods) with strong VIS and NIR light harvesting abilities. Moreover, the characteristic 3D metal-semiconductor junction of the Au@Nb@H KNbO NPPs favors the transfer of plasmonic hot carriers to trigger dye photodegradation and water photoelectrolysis as proofs-of-concept. Such broadband solar spectral response renders the Au@Nb@H KNbO NPPs highly promising for widespread photoactive devices.
长期以来,人们一直致力于通过光催化剂充分利用漫射太阳能以进行环境修复和燃料生成。与在太阳光谱的紫外至可见光范围内所做的巨大努力相比,近红外和红外区域几乎没有得到关注,尽管它们占太阳通量的约 50%。在这里,我们提出了一种仿生光催化剂蓝图,以模仿天然植物-豆荚的生长模式来解决这个问题。通过在半导体 H KNbO 纳米卷的腔中单向播种核壳 Au@Nb 纳米粒子来体现这种设计。这种纳米豆荚(NPP)结构的仿生设计促进了双金属 Au@Nb 纳米天线(豆子)之间的近场等离子体-等离子体耦合,赋予了 UV 活性的 H KNbO 半导体(豆荚)很强的可见光和近红外光捕获能力。此外,Au@Nb@H KNbO NPPs 的 3D 金属-半导体结的特点有利于等离子体热载流子的转移,从而触发染料光降解和水光电解,作为概念验证。这种宽带太阳光谱响应使得 Au@Nb@H KNbO NPPs 非常有希望用于广泛的光活性器件。