Suppr超能文献

Fatty acid-dependent ethanol metabolism.

作者信息

Handler J A, Thurman R G

出版信息

Biochem Biophys Res Commun. 1985 Nov 27;133(1):44-51. doi: 10.1016/0006-291x(85)91839-x.

Abstract

Rates of ethanol oxidation by perfused livers from fasted female rats were decreased from 82 +/- 8 to 11 +/- 7 mumol/g/hr by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase. The subsequent addition of fatty acids of various chain lengths in the presence of 4-methylpyrazole increased rates of ethanol uptake markedly. Palmitate (1 mM) increased rates of ethanol oxidation to 95 +/- 8 mumol/g/hr, while octanoate and oleate increased rates to 58 +/- 11 and 68 +/- 15 mumol/g/hr, respectively. Hexanoate, a short-chain fatty acid oxidized predominantly in the mitochondria, had no effect. Addition of oleate also increased the steady-state level of catalase-H2O2. Pretreatment of rats for 1.5 hours with 3-amino-1,2,4-triazole (1.0 g/kg), an inhibitor of catalase, prevented the ethanol-dependent decrease in the steady-state level of catalase-H2O2 completely. Under these conditions, aminotriazole decreased rates of ethanol oxidation by about 50% and blocked the stimulation of ethanol oxidation by fatty acids. Oleate decreased rates of aniline hydroxylation by about 50%, indicating that cytochrome P450 is not involved in the stimulation of ethanol uptake by fatty acids. Furthermore, oleate stimulated ethanol uptake in livers from ADH-negative deermice indicating that fatty acids do not simply displace 4-methylpyrazole from alcohol dehydrogenase. It is concluded that the stimulation of ethanol oxidation by fatty acids is due to increased H2O2 supplied by the peroxisomal beta-oxidation of fatty acids for the catalase-H2O2 peroxidation pathway.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验