School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
Department of Bioresources, University of Kashmir, Srinagar 190006, India.
J Mol Biol. 2018 Mar 2;430(5):682-694. doi: 10.1016/j.jmb.2018.01.005. Epub 2018 Jan 16.
The molecular basis of polyspecificity of Mdr1p, a major drug/H antiporter of Candida albicans, is not elucidated. We have probed the nature of the drug-binding pocket by performing systematic mutagenesis of the 12 transmembrane segments. Replacement of the 252 amino acid residues with alanine or glycine yielded 2/3 neutral mutations while 1/3 led to the complete or selective loss of resistance to drugs or substrates transported by the pump. Using the GlpT-based 3D-model of Mdr1p, we roughly categorized these critical residues depending on their type and localization, 1°/ main structural impact ("S" group), 2°/ exposure to the lipid interface ("L" group), 3°/ buried but not facing the main central pocket, inferred as critical for the overall H/drug antiport mechanism ("M" group) and finally 4°/ buried and facing the main central pocket ("B" group). Among "B" category, 13 residues were essential for the large majority of drugs/substrates, while 5 residues were much substrate-specific, suggesting a role in governing polyspecificity (P group). 3D superposition of the substrate-specific MFS Glut1 and XylE with the MDR substrate-polyspecific MdfA and Mdr1p revealed that the B group forms a common substrate interaction core while the P group is only found in the 2 MDR MFS transporters, distributed into 3 areas around the B core. This specific pattern has let us to propose that the structural basis for polyspecificity of MDR MFS transporters is the extended capacity brought by residues located at the periphery of a binding core to accomodate compounds differing in size and type.
多药耐药蛋白 1(Mdr1p)是白色念珠菌中主要的药物/质子逆向转运体,其多特异性的分子基础尚不清楚。我们通过对 12 个跨膜片段进行系统的突变来探测药物结合口袋的性质。用丙氨酸或甘氨酸替代 252 个氨基酸残基产生 2/3 的中性突变,而 1/3 的突变导致对泵转运的药物或底物的完全或选择性耐药丧失。利用基于 GlpT 的 Mdr1p 的 3D 模型,我们根据其类型和定位,大致将这些关键残基分为 1°/主要结构影响(“S”组)、2°/暴露于脂质界面(“L”组)、3°/埋于非主要中央口袋,但推测对整体 H/药物反向转运机制关键(“M”组),最后 4°/埋于并面向主要中央口袋(“B”组)。在“B”组中,有 13 个残基对大多数药物/底物是必需的,而 5 个残基对底物具有很强的特异性,表明其在控制多特异性方面具有作用(P 组)。底物特异性 MFS Glut1 和 XylE 与 MDR 底物多特异性 MdfA 和 Mdr1p 的 3D 叠加显示,B 组形成一个共同的底物相互作用核心,而 P 组仅存在于 2 个 MDR MFS 转运体中,分布在 B 核心周围的 3 个区域。这种特定的模式使我们提出,MDR MFS 转运体多特异性的结构基础是位于结合核心外围的残基的扩展能力,以适应大小和类型不同的化合物。