Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.).
Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
Mol Pharmacol. 2018 Apr;93(4):309-322. doi: 10.1124/mol.117.110296. Epub 2018 Jan 17.
Our recent explorations of allosteric modulators with improved properties resulted in the identification of two biased negative allosteric modulators, BD103 (-1-{[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-]pyrimi-din2yl]ethyl}-4-(4-fluorobutoxy)--[(1-methylpiperidin-4-yl)methyl}]butanamide) and BD064 (5-[(-{1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-]pyrimidin-2-yl]ethyl-2-[4-fluoro-3-(trifluoromethyl)phenyl]acetamido)methyl]-2-fluorophenyl}boronic acid), that exhibited probe-dependent inhibition of CXC-motif chemokine receptor CXCR3 signaling. With the intention to elucidate the structural mechanisms underlying their selectivity and probe dependence, we used site-directed mutagenesis combined with homology modeling and docking to identify amino acids of CXCR3 that contribute to modulator binding, signaling, and transmission of cooperativity. With the use of allosteric radioligand RAMX3 ([H]-{1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-]pyrimidin-2-yl]ethyl}-2-[4-fluoro-3-(trifluoromethyl)phenyl]--[(1-methylpiperidin-4-yl)methyl]acetamide), we identified that F131 and Y308 contribute specifically to the binding pocket of BD064, whereas D186 solely participates in the stabilization of binding conformation of BD103. The influence of mutations on the ability of negative allosteric modulators to inhibit chemokine-mediated activation (CXCL11 and CXCL10) was assessed with the bioluminescence resonance energy transfer-based cAMP and -arrestin recruitment assay. Obtained data revealed complex molecular mechanisms governing biased and probe-dependent signaling at CXCR3. In particular, F131, S304, and Y308 emerged as key residues for the compounds to modulate the chemokine response. Notably, D186, W268, and S304 turned out to play a role in signal pathway selectivity of CXCL10, as mutations of these residues led to a G protein-active but -arrestin-inactive conformation. These diverse effects of mutations suggest the existence of ligand- and pathway-specific receptor conformations and give new insights in the sophisticated signaling machinery between allosteric ligands, chemokines, and their receptors, which can provide a powerful platform for the development of new allosteric drugs with improved pharmacological properties.
我们最近对具有改进性质的变构调节剂进行了探索,鉴定出两种具有偏置负变构调节作用的化合物,BD103(-1-{[3-(4-乙氧基苯基)-4-氧代-3,4-二氢吡啶并[2,3-]嘧啶-2-基]乙基}-4-(4-氟丁氧基)-[[(1-甲基哌啶-4-基)甲基]丁酰胺)和 BD064(5-[-{1-[3-(4-乙氧基苯基)-4-氧代-3,4-二氢吡啶并[2,3-]嘧啶-2-基]乙基-2-[4-氟-3-(三氟甲基)苯基]乙酰胺基)甲基]-2-氟苯基]硼酸),它们对 CXC 基序趋化因子受体 CXCR3 的信号显示出探针依赖性抑制作用。为了阐明它们的选择性和探针依赖性的结构机制,我们使用定点突变结合同源建模和对接来鉴定 CXCR3 中的氨基酸,这些氨基酸有助于调节剂的结合、信号传递和协同作用的传递。使用变构放射性配体 RAMX3([H]-{1-[3-(4-乙氧基苯基)-4-氧代-3,4-二氢吡啶并[2,3-]嘧啶-2-基]乙基}-2-[4-氟-3-(三氟甲基)苯基]-[[(1-甲基哌啶-4-基)甲基]乙酰胺),我们确定 F131 和 Y308 特异性地参与 BD064 的结合口袋,而 D186 仅参与 BD103 结合构象的稳定。通过基于生物发光共振能量转移的 cAMP 和 -arrestin 招募测定评估突变对负变构调节剂抑制趋化因子介导的激活(CXCL11 和 CXCL10)的能力的影响。获得的数据揭示了调节 CXCR3 偏置和探针依赖性信号的复杂分子机制。特别是,F131、S304 和 Y308 成为化合物调节趋化因子反应的关键残基。值得注意的是,D186、W268 和 S304 在 CXCL10 的信号通路选择性中发挥作用,因为这些残基的突变导致 G 蛋白活性但 -arrestin 无活性构象。这些突变的不同影响表明存在配体和途径特异性的受体构象,并为变构配体、趋化因子及其受体之间复杂的信号机制提供了新的见解,这可以为具有改进的药理学性质的新型变构药物的开发提供有力的平台。