Suppr超能文献

通过紫外激光显微切割和逆转录定量聚合酶链反应对来自异质性死后中脑样本的人类黑质多巴胺能神经元进行细胞特异性RNA定量分析

Cell-Specific RNA Quantification in Human SN DA Neurons from Heterogeneous Post-mortem Midbrain Samples by UV-Laser Microdissection and RT-qPCR.

作者信息

Duda Johanna, Fauler Michael, Gründemann Jan, Liss Birgit

机构信息

Institute of Applied Physiology, University of Ulm, Ulm, Germany.

Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.

出版信息

Methods Mol Biol. 2018;1723:335-360. doi: 10.1007/978-1-4939-7558-7_19.

Abstract

Cell specificity of gene expression analysis is from particular relevance when the abundance of target cells is not homogeneous in the compared tissue samples, like it is the case, e.g., when comparing brain tissues from controls and in neurodegenerative disease states. While single-cell gene expression profiling is already a methodological challenge per se, it becomes even more prone to artifacts when analyzing individual cells from human post-mortem samples. Not only because human samples can never be matched as precisely as those from animal models, but also, because the RNA-quality that can be obtained from human samples usually displays a high range of variability. Here, we detail our most actual method for combining contact-free UV-laser microdissection (UV-LMD) with reverse transcription and quantitative PCR (RT-qPCR) that addresses all these issues. We specifically optimized our protocols to quantify and compare mRNA as well as miRNA levels in human neurons from post-mortem brain tissue. As human post-mortem tissue samples are never perfectly matched (e.g., in respect to distinct donor ages and RNA integrity numbers RIN), we refined data analysis by applying a linear mixed effects model to RT-qPCR data, which allows dissecting and subtracting linear contributions of distinct confounders on detected gene expression levels (i.e., RIN, age). All these issues were considered for comparative gene expression analysis in dopamine (DA) midbrain neurons of the Substantia nigra (SN) from controls and Parkinson's disease (PD) specimens, as the preferential degeneration of SN DA neurons in the pathological hallmark of PD. By utilizing the here-described protocol we identified that a variety of genes-encoding for ion channels, dopamine metabolism proteins, and PARK gene products-display a transcriptional dysregulation in remaining human SN DA neurons from PD brains compared to those of controls. We show that the linear mixed effects model allows further stratification of RT-qPCR data, as it indicated that differential gene expression of some genes was rather correlated with different ages of the analyzed human brain samples than with the disease state.

摘要

当在比较的组织样本中目标细胞的丰度不均匀时,基因表达分析的细胞特异性就具有特别的相关性,例如在比较来自对照和神经退行性疾病状态的脑组织时就是这种情况。虽然单细胞基因表达谱分析本身已经是一项方法学挑战,但在分析人类尸检样本中的单个细胞时,它更容易产生伪像。这不仅是因为人类样本永远无法像动物模型样本那样精确匹配,还因为从人类样本中获得的RNA质量通常显示出很大的变异性。在这里,我们详细介绍了我们最新的将非接触式紫外激光显微切割(UV-LMD)与逆转录和定量PCR(RT-qPCR)相结合的方法,该方法解决了所有这些问题。我们专门优化了我们的方案,以定量和比较来自尸检脑组织的人类神经元中的mRNA以及miRNA水平。由于人类尸检组织样本永远无法完美匹配(例如,在不同供体年龄和RNA完整性数值RIN方面),我们通过将线性混合效应模型应用于RT-qPCR数据来完善数据分析,这使得能够剖析并减去不同混杂因素对检测到的基因表达水平(即RIN、年龄)的线性贡献。在对照和帕金森病(PD)标本的黑质(SN)多巴胺(DA)中脑神经元的比较基因表达分析中考虑了所有这些问题,因为SN DA神经元的优先退化是PD的病理标志。通过使用这里描述的方案,我们发现与对照相比,来自PD大脑的剩余人类SN DA神经元中,多种编码离子通道、多巴胺代谢蛋白和PARK基因产物的基因存在转录失调。我们表明,线性混合效应模型允许对RT-qPCR数据进行进一步分层,因为它表明一些基因的差异基因表达与所分析的人类脑样本的不同年龄相关性更强,而不是与疾病状态相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验