1 Département d'Informatique, Université du Québec à Montréal, Montréal, QC, Canada.
2 McGill University and Genome Quebec Innovation Centre, Montréal, QC, Canada.
SLAS Discov. 2018 Jun;23(5):448-458. doi: 10.1177/2472555217750377. Epub 2018 Jan 18.
Data generated by high-throughput screening (HTS) technologies are prone to spatial bias. Traditionally, bias correction methods used in HTS assume either a simple additive or, more recently, a simple multiplicative spatial bias model. These models do not, however, always provide an accurate correction of measurements in wells located at the intersection of rows and columns affected by spatial bias. The measurements in these wells depend on the nature of interaction between the involved biases. Here, we propose two novel additive and two novel multiplicative spatial bias models accounting for different types of bias interactions. We describe a statistical procedure that allows for detecting and removing different types of additive and multiplicative spatial biases from multiwell plates. We show how this procedure can be applied by analyzing data generated by the four HTS technologies (homogeneous, microorganism, cell-based, and gene expression HTS), the three high-content screening (HCS) technologies (area, intensity, and cell-count HCS), and the only small-molecule microarray technology available in the ChemBank small-molecule screening database. The proposed methods are included in the AssayCorrector program, implemented in R, and available on CRAN.
高通量筛选 (HTS) 技术产生的数据容易出现空间偏倚。传统上,HTS 中使用的偏倚校正方法假设要么是简单的加性模型,要么是最近提出的简单乘法空间偏倚模型。然而,这些模型并不总是能够准确校正位于受空间偏倚影响的行和列交叉处的孔中的测量值。这些孔中的测量值取决于涉及的偏倚之间相互作用的性质。在这里,我们提出了两种新的加性和两种新的乘法空间偏倚模型,用于解释不同类型的偏倚相互作用。我们描述了一种统计程序,该程序允许从多孔板中检测和去除不同类型的加性和乘法空间偏倚。我们通过分析来自四种 HTS 技术(均相、微生物、基于细胞和基因表达 HTS)、三种高内涵筛选 (HCS) 技术(面积、强度和细胞计数 HCS)以及唯一可用的小分子筛选数据库 ChemBank 中的小分子微阵列技术生成的数据,展示了如何应用此过程。所提出的方法包含在 R 中实现的 AssayCorrector 程序中,并可在 CRAN 上获得。