Suppr超能文献

全光图像运动去模糊。

Plenoptic Image Motion Deblurring.

出版信息

IEEE Trans Image Process. 2018 Apr;27(4):1723-1734. doi: 10.1109/TIP.2017.2775062.

Abstract

We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene. Therefore, motion deblurring algorithms designed for standard cameras are not directly applicable. Moreover, many state of the art blind deconvolution algorithms are based on iterative schemes, where blurry images are synthesized through the imaging model. However, current imaging models for plenoptic images are impractical due to their high dimensionality. We observe that plenoptic cameras introduce periodic patterns that can be exploited to obtain highly parallelizable numerical schemes to synthesize images. These schemes allow extremely efficient GPU implementations that enable the use of iterative methods. We can then cast blind deconvolution of a blurry light field image as a regularized energy minimization to recover a sharp high-resolution scene texture and the camera motion. Furthermore, the proposed formulation can handle non-uniform motion blur due to camera shake as demonstrated on both synthetic and real light field data.

摘要

我们提出了一种从带有运动微光相机拍摄的单张光场中去除运动模糊的方法。由于运动是未知的,我们求助于盲解卷积公式,其目的是同时识别模糊点扩展函数和潜在的清晰图像。即使在没有运动的情况下,由微光相机拍摄的光场图像也会受到混叠和散焦的复杂组合的影响,这取决于场景的 3D 几何形状。因此,专为标准相机设计的运动去模糊算法并不直接适用。此外,许多最先进的盲解卷积算法都基于迭代方案,通过成像模型合成模糊图像。然而,由于其高维度,当前的微光图像成像模型不切实际。我们观察到微光相机引入了可以利用的周期性模式,以获得高度可并行化的数值方案来合成图像。这些方案允许极其高效的 GPU 实现,从而能够使用迭代方法。然后,我们可以将模糊光场图像的盲解卷积表示为正则化能量最小化问题,以恢复清晰的高分辨率场景纹理和相机运动。此外,所提出的公式可以处理由于相机抖动引起的非均匀运动模糊,如在合成和真实光场数据上所展示的。

相似文献

1
Plenoptic Image Motion Deblurring.
IEEE Trans Image Process. 2018 Apr;27(4):1723-1734. doi: 10.1109/TIP.2017.2775062.
2
Dynamic Video Deblurring Using a Locally Adaptive Blur Model.
IEEE Trans Pattern Anal Mach Intell. 2018 Oct;40(10):2374-2387. doi: 10.1109/TPAMI.2017.2761348. Epub 2017 Oct 10.
3
Deblurring Low-Light Images with Light Streaks.
IEEE Trans Pattern Anal Mach Intell. 2018 Oct;40(10):2329-2341. doi: 10.1109/TPAMI.2017.2768365. Epub 2017 Nov 2.
4
Temporal Coherence-Based Deblurring Using Non-Uniform Motion Optimization.
IEEE Trans Image Process. 2017 Oct;26(10):4991-5004. doi: 10.1109/TIP.2017.2731206. Epub 2017 Jul 24.
6
Framelet-based blind motion deblurring from a single image.
IEEE Trans Image Process. 2012 Feb;21(2):562-72. doi: 10.1109/TIP.2011.2164413. Epub 2011 Aug 12.
7
Non-uniform deblurring in HDR image reconstruction.
IEEE Trans Image Process. 2013 Oct;22(10):3739-50. doi: 10.1109/TIP.2013.2257809. Epub 2013 Apr 12.
8
High-dimensional camera shake removal with given depth map.
IEEE Trans Image Process. 2014 Jun;23(6):2688-703. doi: 10.1109/TIP.2014.2320368.
10
Robust Blur Kernel Estimation for License Plate Images From Fast Moving Vehicles.
IEEE Trans Image Process. 2016 May;25(5):2311-23. doi: 10.1109/TIP.2016.2535375.

引用本文的文献

1
Review of light field technologies.
Vis Comput Ind Biomed Art. 2021 Dec 3;4(1):29. doi: 10.1186/s42492-021-00096-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验