Zhang Rui, Schweizer Kenneth S
J Phys Chem B. 2018 Apr 5;122(13):3465-3479. doi: 10.1021/acs.jpcb.7b10568. Epub 2018 Feb 5.
The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.
用于单组分粘性液体和悬浮液的弹性集体非线性朗之万方程理论被推广,以处理任意组成、尺寸比和粒子间相互作用的玻璃形成二元球体混合物中的耦合慢激活弛豫和扩散。引入了轨迹级动态耦合参数概念,为较小的渗透剂和较大的基质粒子构建两个耦合的动态自由能函数。提出了一个两步动态图景,其中第一步过程涉及基于时间重合条件以自洽方式量化的基质促进的渗透剂跳跃。在渗透剂动态平衡后,有效的单组分基质粒子动力学由新的动态自由能控制(第二步过程)。根据与第一步和第二步过程相关的时间尺度以及基质相关促进的程度,预测了不同的物理场景。该理论针对纯硬核相互作用进行了实现,并基于可变动力学标准、渗透剂 - 基质耦合激活弛豫、两种物质的自扩散、动态脆性和剪切弹性来解决玻璃化转变问题。做出了可测试的预测。受纯硬球流体解析超局部极限思想的启发,我们确定了结构 - 热力学 - 动力学关系。作为分子 - 聚合物热混合物的案例研究,基于预测映射方案对化学匹配的完全互溶的聚苯乙烯 - 甲苯系统进行了定量研究。所得甲苯扩散率和混合物玻璃化转变温度的无可调参数结果与实验结果吻合良好。该理论为处理玻璃形成混合物中的各种动力学问题提供了基础,包括胶体和纳米颗粒的悬浮液、聚合物 - 分子液体以及聚合物纳米复合材料。