Suppr超能文献

复杂扩散的形态反转。

Morphological inversion of complex diffusion.

机构信息

University of Notre Dame, Department of Physics, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, USA.

出版信息

Phys Rev E. 2017 Sep;96(3-1):032314. doi: 10.1103/PhysRevE.96.032314. Epub 2017 Sep 26.

Abstract

Epidemics, neural cascades, power failures, and many other phenomena can be described by a diffusion process on a network. To identify the causal origins of a spread, it is often necessary to identify the triggering initial node. Here, we define a new morphological operator and use it to detect the origin of a diffusive front, given the final state of a complex network. Our method performs better than algorithms based on distance (closeness) and Jordan centrality. More importantly, our method is applicable regardless of the specifics of the forward model, and therefore can be applied to a wide range of systems such as identifying the patient zero in an epidemic, pinpointing the neuron that triggers a cascade, identifying the original malfunction that causes a catastrophic infrastructure failure, and inferring the ancestral species from which a heterogeneous population evolves.

摘要

流行病、神经级联反应、电力故障以及许多其他现象都可以用网络上的扩散过程来描述。为了确定传播的因果起源,通常需要识别触发初始节点。在这里,我们定义了一种新的形态运算符,并使用它来检测给定复杂网络的最终状态的扩散前沿的起源。我们的方法比基于距离(接近度)和乔丹中心度的算法表现更好。更重要的是,我们的方法适用于无论正向模型的具体情况如何,因此可以应用于广泛的系统,例如识别流行病中的零号病人,确定引发级联的神经元,识别导致灾难性基础设施故障的原始故障,以及推断从何处进化出异质种群的祖先物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f7f/7217541/5846fed8b497/e032314_1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验