University of Notre Dame, Department of Physics, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, USA.
Phys Rev E. 2017 Sep;96(3-1):032314. doi: 10.1103/PhysRevE.96.032314. Epub 2017 Sep 26.
Epidemics, neural cascades, power failures, and many other phenomena can be described by a diffusion process on a network. To identify the causal origins of a spread, it is often necessary to identify the triggering initial node. Here, we define a new morphological operator and use it to detect the origin of a diffusive front, given the final state of a complex network. Our method performs better than algorithms based on distance (closeness) and Jordan centrality. More importantly, our method is applicable regardless of the specifics of the forward model, and therefore can be applied to a wide range of systems such as identifying the patient zero in an epidemic, pinpointing the neuron that triggers a cascade, identifying the original malfunction that causes a catastrophic infrastructure failure, and inferring the ancestral species from which a heterogeneous population evolves.
流行病、神经级联反应、电力故障以及许多其他现象都可以用网络上的扩散过程来描述。为了确定传播的因果起源,通常需要识别触发初始节点。在这里,我们定义了一种新的形态运算符,并使用它来检测给定复杂网络的最终状态的扩散前沿的起源。我们的方法比基于距离(接近度)和乔丹中心度的算法表现更好。更重要的是,我们的方法适用于无论正向模型的具体情况如何,因此可以应用于广泛的系统,例如识别流行病中的零号病人,确定引发级联的神经元,识别导致灾难性基础设施故障的原始故障,以及推断从何处进化出异质种群的祖先物种。