Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary.
Phys Rev E. 2017 Sep;96(3-1):033001. doi: 10.1103/PhysRevE.96.033001. Epub 2017 Sep 5.
We investigate the size scaling of the macroscopic fracture strength of heterogeneous materials when microscopic disorder is controlled by fat-tailed distributions. We consider a fiber bundle model where the strength of single fibers is described by a power law distribution over a finite range. Tuning the amount of disorder by varying the power law exponent and the upper cutoff of fibers' strength, in the limit of equal load sharing an astonishing size effect is revealed: For small system sizes the bundle strength increases with the number of fibers, and the usual decreasing size effect of heterogeneous materials is restored only beyond a characteristic size. We show analytically that the extreme order statistics of fibers' strength is responsible for this peculiar behavior. Analyzing the results of computer simulations we deduce a scaling form which describes the dependence of the macroscopic strength of fiber bundles on the parameters of microscopic disorder over the entire range of system sizes.
我们研究了在微观无序受到长尾分布控制时,非均匀材料宏观断裂强度的尺寸缩放规律。我们考虑了一种纤维束模型,其中单根纤维的强度由有限范围内的幂律分布描述。通过改变幂律指数和纤维强度的上限来调整无序程度,在平均分担载荷的极限下,揭示了惊人的尺寸效应:对于小的系统尺寸,束的强度随纤维数量的增加而增加,只有超过特征尺寸后,非均匀材料的常见尺寸减小效应才会恢复。我们从理论上证明了纤维强度的极端顺序统计量是造成这种特殊行为的原因。通过分析计算机模拟的结果,我们推导出了一个标度形式,该形式描述了纤维束的宏观强度对微观无序参数的依赖性,涵盖了整个系统尺寸范围。