Suppr超能文献

多组分合金中非等温凝固定量相场模型的变分形式。

Variational formulation of a quantitative phase-field model for nonisothermal solidification in a multicomponent alloy.

机构信息

Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.

Faculty of Mechanical Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

出版信息

Phys Rev E. 2017 Sep;96(3-1):033311. doi: 10.1103/PhysRevE.96.033311. Epub 2017 Sep 20.

Abstract

A variational formulation of a quantitative phase-field model is presented for nonisothermal solidification in a multicomponent alloy with two-sided asymmetric diffusion. The essential ingredient of this formulation is that the diffusion fluxes for conserved variables in both the liquid and solid are separately derived from functional derivatives of the total entropy and then these fluxes are related to each other on the basis of the local equilibrium conditions. In the present formulation, the cross-coupling terms between the phase-field and conserved variables naturally arise in the phase-field equation and diffusion equations, one of which corresponds to the antitrapping current, the phenomenological correction term in early nonvariational models. In addition, this formulation results in diffusivities of tensor form inside the interface. Asymptotic analysis demonstrates that this model can exactly reproduce the free-boundary problem in the thin-interface limit. The present model is widely applicable because approximations and simplifications are not formally introduced into the bulk's free energy densities and because off-diagonal elements of the diffusivity matrix are explicitly taken into account. Furthermore, we propose a nonvariational form of the present model to achieve high numerical performance. A numerical test of the nonvariational model is carried out for nonisothermal solidification in a binary alloy. It shows fast convergence of the results with decreasing interface thickness.

摘要

提出了一种用于具有双侧不对称扩散的多组分合金非等温凝固的定量相场模型的变分公式。该公式的基本要素是,液体和固体中守恒变量的扩散通量分别从总熵的泛函导数中推导出来,然后根据局部平衡条件将这些通量相互关联。在目前的公式中,相场和守恒变量之间的交叉耦合项在相场方程和扩散方程中自然出现,其中一个对应于反捕获电流,这是早期非变分模型中的唯象修正项。此外,该公式在界面内产生张量形式的扩散率。渐近分析表明,该模型可以在薄界面极限下精确再现自由边界问题。由于未正式引入体的自由能密度中的近似和简化,并且明确考虑了扩散率矩阵的非对角元素,因此该模型具有广泛的适用性。此外,我们提出了该模型的非变分形式以实现高数值性能。对二元合金非等温凝固的非变分模型进行了数值测试。结果表明,随着界面厚度的减小,结果的收敛速度很快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验