Bressloff Paul C, Lawley Sean D
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA.
Phys Rev E. 2017 Jul;96(1-1):012129. doi: 10.1103/PhysRevE.96.012129. Epub 2017 Jul 13.
A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ→0) and fast switching limit (ε→0) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ε,κ→0 with ε/κ^{2} fixed.
连续随机过程理论中的一个基本问题是乘性白噪声的解释,这通常被称为伊藤 - 斯特拉托诺维奇困境。从物理角度来看,这反映了需要引入额外的约束来确定噪声的性质,而从数学角度来看,它反映了随机微分方程(SDEs)表述中的一种模糊性。最近,我们已经确定了一种基于时间无序形式来获得伊藤随机微分方程的机制。受分子生物学中的切换过程启发,我们考虑了一个布朗粒子,它在具有不同扩散系数的两个不同构象状态之间随机切换。在每个状态下,粒子经历正常扩散(加性噪声),因此在噪声的解释上没有模糊性。然而,如果切换速率取决于位置,那么在快速切换极限下,就会得到具有伊藤形式的空间依赖扩散系数的布朗运动。在本文中,我们将我们的理论扩展到包括有色加性噪声。我们表明,通过同时取白噪声极限(κ→0)和快速切换极限(ε→0)得到的有效乘性噪声过程的性质取决于这两个极限的取法顺序。如果先取白噪声极限,那么我们得到伊藤形式,如果先取快速切换极限,那么我们得到斯特拉托诺维奇形式。此外,在这两种情况下有效扩散系数的形式也不同。即使在跃迁速率与空间无关的情况下,后一个结果仍然成立,在这种情况下会得到具有不同扩散系数的加性噪声过程。最后,我们表明,在同时极限ε,κ→0且ε/κ²固定的情况下会得到另一种乘性噪声形式。