Suppr超能文献

基于能量平衡方法的非牛顿幂律液体在球形基底上的铺展规律。

Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach.

作者信息

Iwamatsu Masao

机构信息

Department of Physics, Faculty of Liberal Arts and Sciences, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan.

出版信息

Phys Rev E. 2017 Jul;96(1-1):012803. doi: 10.1103/PhysRevE.96.012803. Epub 2017 Jul 24.

Abstract

The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.

摘要

在毛细控制铺展 regime 中,对完全润湿球形基底的非牛顿幂律液体(包括剪切增稠液体和剪切变稀液体)的帽状球形液滴的铺展进行了理论研究。采用在三相接触线附近具有楔形弯月面的火山口形液滴模型来计算接触线附近的粘性耗散。然后采用能量平衡方法推导控制接触线演化的方程。液滴动态接触角θ的时间演化服从幂律θ∼t^{-α},其中铺展指数α不同于牛顿液体的 Tanner 定律以及非牛顿液体在平坦基底上的定律。此外,还研究了在铺展后期,当接触角变低且接触线曲率变大时,在球形基底上可实现的线张力主导铺展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验