Department of Physics, Faculty of Liberal Arts and Sciences, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan.
Phys Rev E. 2017 Oct;96(4-1):042803. doi: 10.1103/PhysRevE.96.042803. Epub 2017 Oct 20.
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids on a flat and a spherical rough and textured substrate is theoretically studied in the capillary-controlled spreading regime. A droplet whose scale is much larger than that of the roughness of substrate is considered. The equilibrium contact angle on a rough substrate is modeled by the Wenzel and the Cassie-Baxter model. Only the viscous energy dissipation within the droplet volume is considered, and that within the texture of substrate by imbibition is neglected. Then, the energy balance approach is adopted to derive the evolution equation of the contact angle. When the equilibrium contact angle vanishes, the relaxation of dynamic contact angle θ of a droplet obeys a power-law decay θ∼t^{-α} except for the Newtonian and the non-Newtonian shear-thinning liquid of the Wenzel model on a spherical substrate. The spreading exponent α of the non-Newtonian shear-thickening liquid of the Wenzel model on a spherical substrate is larger than others. The relaxation of the Newtonian liquid of the Wenzel model on a spherical substrate is even faster showing the exponential relaxation. The relaxation of the non-Newtonian shear-thinning liquid of Wenzel model on a spherical substrate is fastest and finishes within a finite time. Thus, the topography (roughness) and the topology (flat to spherical) of substrate accelerate the spreading of droplet.
在毛细控制铺展阶段,对非牛顿幂律液体的帽形球形液滴在平坦和球形粗糙及纹理化基底上的铺展进行了理论研究。考虑了尺度远大于基底粗糙度的液滴。粗糙基底上的平衡接触角通过 Wenzel 和 Cassie-Baxter 模型进行建模。仅考虑了液滴体积内的粘性能量耗散,而忽略了基底内的纹理的吸液能量耗散。然后,采用能量平衡方法推导出接触角的演化方程。当平衡接触角为零时,液滴的动态接触角θ的弛豫服从幂律衰减θ∼t^{-α},除了球形基底上的牛顿和 Wenzel 模型的非牛顿剪切稀化液体之外。球形基底上的 Wenzel 模型的非牛顿剪切增稠液体的铺展指数α大于其他的。球形基底上的 Wenzel 模型的牛顿液体的弛豫甚至更快,表现出指数弛豫。球形基底上的 Wenzel 模型的非牛顿剪切稀化液体的弛豫最快,在有限的时间内完成。因此,基底的形貌(粗糙度)和拓扑结构(平面到球形)加速了液滴的铺展。