Suppr超能文献

记忆引导搜索的神经场模型。

Neural field model of memory-guided search.

机构信息

Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA.

Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.

出版信息

Phys Rev E. 2017 Dec;96(6-1):062411. doi: 10.1103/PhysRevE.96.062411. Epub 2017 Dec 18.

Abstract

Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.

摘要

许多生物在搜索过程中能够记住它们之前访问过的位置。视觉搜索实验表明,在找到隐藏目标之前,搜索会避开这些位置,从而减少搜索路径中的冗余。我们开发并分析了一个两层神经场模型,该模型在搜索任务中对位置信息进行编码。位置编码层维持与搜索代理当前位置相对应的凸起吸引子,搜索由传播凸起的速度输入来建模。记忆层维持受波前限制的持久活动,其边缘响应来自位置层的兴奋性输入而扩展。然后可以根据记忆位置对搜索进行偏向,从而影响到位置层的速度输入。渐近技术用于将我们的模型动力学简化为一个跟踪凸起位置和前边界的低维方程组系统。不同的目标发现任务进行了性能比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验