Suppr超能文献

噪声驱动的栅格细胞网络神经场系统中的分岔

Noise-driven bifurcations in a neural field system modelling networks of grid cells.

机构信息

Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.

Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.

出版信息

J Math Biol. 2022 Sep 27;85(4):42. doi: 10.1007/s00285-022-01811-6.

Abstract

The activity generated by an ensemble of neurons is affected by various noise sources. It is a well-recognised challenge to understand the effects of noise on the stability of such networks. We demonstrate that the patterns of activity generated by networks of grid cells emerge from the instability of homogeneous activity for small levels of noise. This is carried out by analysing the robustness of network activity patterns with respect to noise in an upscaled noisy grid cell model in the form of a system of partial differential equations. Inhomogeneous network patterns are numerically understood as branches bifurcating from unstable homogeneous states for small noise levels. We show that there is a phase transition occurring as the level of noise decreases. Our numerical study also indicates the presence of hysteresis phenomena close to the precise critical noise value.

摘要

由神经元集合产生的活动受到各种噪声源的影响。理解噪声对这种网络稳定性的影响是一个公认的挑战。我们证明,网格细胞网络产生的活动模式源于小噪声水平下均匀活动的不稳定性。这是通过分析在噪声放大的网格细胞模型的偏微分方程系统中,网络活动模式对噪声的鲁棒性来实现的。非均匀网络模式在数值上被理解为小噪声水平下从不稳定的均匀状态分叉的分支。我们表明,随着噪声水平的降低,会发生一个相变。我们的数值研究还表明,在接近精确临界噪声值的地方存在滞后现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验