Suppr超能文献

离散 Swift-Hohenberg 方程中的同宿蛇形运动。

Homoclinic snaking in the discrete Swift-Hohenberg equation.

机构信息

Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom.

Centre of Mathematical Modelling and Simulation, Institut Teknologi Bandung, 1st Floor, Labtek III, Jl. Ganesha No. 10, Bandung 40132, Indonesia.

出版信息

Phys Rev E. 2017 Dec;96(6-1):062214. doi: 10.1103/PhysRevE.96.062214. Epub 2017 Dec 21.

Abstract

We consider the discrete Swift-Hohenberg equation with cubic and quintic nonlinearity, obtained from discretizing the spatial derivatives of the Swift-Hohenberg equation using central finite differences. We investigate the discretization effect on the bifurcation behavior, where we identify three regions of the coupling parameter, i.e., strong, weak, and intermediate coupling. Within the regions, the discrete Swift-Hohenberg equation behaves either similarly or differently from the continuum limit. In the intermediate coupling region, multiple Maxwell points can occur for the periodic solutions and may cause irregular snaking and isolas. Numerical continuation is used to obtain and analyze localized and periodic solutions for each case. Theoretical analysis for the snaking and stability of the corresponding solutions is provided in the weak coupling region.

摘要

我们考虑了离散的 Swift-Hohenberg 方程,其中包含立方和五次方非线性项,这是通过对 Swift-Hohenberg 方程的空间导数进行中心有限差分离散得到的。我们研究了离散化对分岔行为的影响,确定了耦合参数的三个区域,即强耦合、弱耦合和中间耦合。在这些区域内,离散的 Swift-Hohenberg 方程的行为与连续极限相似或不同。在中间耦合区域,对于周期性解可能会出现多个 Maxwell 点,这可能会导致不规则的蛇形运动和孤立子。数值延拓用于获得和分析每种情况下的局域和周期性解。在弱耦合区域提供了对相应解的蛇形运动和稳定性的理论分析。

相似文献

1
Homoclinic snaking in the discrete Swift-Hohenberg equation.离散 Swift-Hohenberg 方程中的同宿蛇形运动。
Phys Rev E. 2017 Dec;96(6-1):062214. doi: 10.1103/PhysRevE.96.062214. Epub 2017 Dec 21.
2
Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity.具有三次非线性项的守恒Swift-Hohenberg方程中的局域态
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042915. doi: 10.1103/PhysRevE.87.042915. Epub 2013 Apr 15.
3
Swift-Hohenberg equation with broken reflection symmetry.具有破缺反射对称性的Swift-Hohenberg方程。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 2):036202. doi: 10.1103/PhysRevE.80.036202. Epub 2009 Sep 11.
4
Variational approximations to homoclinic snaking in continuous and discrete systems.连续和离散系统中同宿蜿蜒的变分近似
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066207. doi: 10.1103/PhysRevE.84.066207. Epub 2011 Dec 19.
5
Localized states in the generalized Swift-Hohenberg equation.广义Swift-Hohenberg方程中的局域态
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 2):056211. doi: 10.1103/PhysRevE.73.056211. Epub 2006 May 31.
6
Eckhaus instability and homoclinic snaking.埃克豪斯不稳定性与同宿蛇行
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046201. doi: 10.1103/PhysRevE.78.046201. Epub 2008 Oct 1.
9
Homoclinic snaking in bounded domains.有界区域中的同宿蛇形现象。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026210. doi: 10.1103/PhysRevE.80.026210. Epub 2009 Aug 20.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验