CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex, France.
Phys Rev E. 2017 Dec;96(6-1):060101. doi: 10.1103/PhysRevE.96.060101. Epub 2017 Dec 7.
We obtain several exact results for universal distributions involving the maximum of the Airy_{2} process minus a parabola and plus a Brownian motion, with applications to the one-dimensional Kardar-Parisi-Zhang (KPZ) stochastic growth universality class. This allows one to obtain (i) the universal limit, for large time separation, of the two-time height correlation for droplet initial conditions, e.g., C_{∞}=lim_{t_{2}/t_{1}→+∞}h(t_{1})h(t_{2})[over ¯]^{c}/h(t_{1})^{2}[over ¯]^{c}, with C_{∞}≈0.623, as well as conditional moments, which quantify ergodicity breaking in the time evolution; (ii) in the same limit, the distribution of the midpoint position x(t_{1}) of a directed polymer of length t_{2}; and (iii) the height distribution in stationary KPZ with a step. These results are derived from the replica Bethe ansatz for the KPZ continuum equation, with a "decoupling assumption" in the large time limit. They agree and confirm, whenever they can be compared, with (i) our recent tail results for two-time KPZ with the work by de Nardis and Le Doussal [J. Stat. Mech. (2017) 0532121742-546810.1088/1742-5468/aa6bce], checked in experiments with the work by Takeuchi and co-workers [De Nardis et al., Phys. Rev. Lett. 118, 125701 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.125701] and (ii) a recent result of Maes and Thiery [J. Stat. Phys. 168, 937 (2017)JSTPBS0022-471510.1007/s10955-017-1839-2] on midpoint position.
我们得到了涉及 Airy_2 过程的最大值减去抛物线再加上布朗运动的普遍分布的几个精确结果,这些结果应用于一维 Kardar-Parisi-Zhang (KPZ) 随机增长普适类。这使得我们能够获得 (i) 对于大的时间间隔,对于液滴初始条件的双时间高度相关的普适极限,例如,C_∞=lim_{t_2/t_1→+∞}h(t_1)h(t_2)[over ¯]^{c}/h(t_1)^{2}[over ¯]^{c},其中 C_∞≈0.623,以及条件矩,这些矩量化了时间演化中的遍历破坏;(ii) 在相同的极限下,长度为 t_2 的定向聚合物的中点位置 x(t_1)的分布;以及 (iii) 具有阶跃的静止 KPZ 的高度分布。这些结果来自于 KPZ 连续方程的复本贝叶斯 ansatz,在大时间极限下有一个“解耦假设”。它们与 (i) 我们最近关于带有 de Nardis 和 Le Doussal 工作的双时间 KPZ 的尾部结果[J. Stat. Mech. (2017) 0532121742-546810.1088/1742-5468/aa6bce],在与 Takeuchi 等人的工作[De Nardis 等人,Phys. Rev. Lett. 118, 125701 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.125701]的实验进行比较时是一致的,并且与 (ii) Maes 和 Thiery 的最近结果[J. Stat. Phys. 168, 937 (2017)JSTPBS0022-471510.1007/s10955-017-1839-2]关于中点位置是一致的。