Suppr超能文献

快速凝固近绝对稳定性的强非线性理论。

Strongly nonlinear theory of rapid solidification near absolute stability.

机构信息

Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

出版信息

Phys Rev E. 2017 Oct;96(4-1):042801. doi: 10.1103/PhysRevE.96.042801. Epub 2017 Oct 9.

Abstract

We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f^{''}+(βf^{'})^{2}+f=0, where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the morphological number, as well as the amplitude. The critical amplitude, at which solutions loose periodicity, depends on a single combination of parameters independent of the morphological number that indicate that non-periodic growth is most commonly present for moderate disequilibrium parameters. The spatial distribution of the interface develops deepening roots at late times. Similar spatial distributions are also seen in the limit in which both the cellular and oscillatory modes are close to absolute stability, and the roots deepen with larger departures from the two absolute stability boundaries.

摘要

我们研究了在快速凝固条件下,接近两个绝对稳定极限时二元熔体固液界面的形态变形的非线性演化。其中第一个极限涉及由于表面能足够大,系统完全稳定到胞状不稳定性。在这种情况下,我们推导出几个极限的非线性演化方程,并研究界面不平衡对出现的非线性变形的影响。与平衡状态下的形态稳定性问题不同,在平衡状态下,只有胞状不稳定性出现,只有一个绝对稳定性边界存在,在不平衡状态下,系统容易出现振荡不稳定性,并且出现涉及附着动力学的第二个绝对稳定性边界。足够大的附着动力学稳定了振荡不稳定性。我们推导出一个非线性演化方程来描述接近这个振荡绝对稳定性极限的固液界面的非线性发展。我们发现,随着时间的推移,会出现很强的不对称性。对于均匀的振荡,界面的演化方程简化为简单的形式 f^{''}+(βf^{'})^{2}+f=0,其中β是不平衡参数。最后,我们研究了在两个绝对稳定性极限附近的一个特殊极限,在这个极限中,系统容易出现胞状和振荡不稳定性,并推导出一个能够捕捉这个极限中非线性变形的非线性演化方程。所有这些情况的共同点是,随着与平衡的偏离程度和形态数的增大,在固液界面的最终形状中出现了更大的不对称性。在接近振荡绝对稳定性边界的地方,界面变得根深蒂固,干扰也会变得更加尖锐。只有在初始振幅足够小的情况下,界面才会呈现周期性的时间周期性,其频率取决于包括形态数以及振幅在内的单个物理参数组合。在解失去周期性的临界振幅,取决于独立于形态数的单个参数组合,这表明非周期性生长在中等程度的不平衡参数下最常见。在后期,界面的空间分布会发展出更深的根。在接近绝对稳定性的细胞和振荡模式的极限中也可以看到类似的空间分布,并且随着与两个绝对稳定性边界的偏离程度的增大,根会变深。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验