Suppr超能文献

有效利用样本持久性进行优化:量子退火机与各种蒙特卡罗优化方法的案例研究。

Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods.

机构信息

1QB Information Technologies (1QBit), 458-550 Burrard Street, Vancouver, British Columbia, Canada V6C 2B5.

Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4.

出版信息

Phys Rev E. 2017 Oct;96(4-1):043312. doi: 10.1103/PhysRevE.96.043312. Epub 2017 Oct 31.

Abstract

We present and apply a general-purpose, multistart algorithm for improving the performance of low-energy samplers used for solving optimization problems. The algorithm iteratively fixes the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are smaller and less connected, and samplers tend to give better low-energy samples for these problems. The algorithm is trivially parallelizable since each start in the multistart algorithm is independent, and could be applied to any heuristic solver that can be run multiple times to give a sample. We present results for several classes of hard problems solved using simulated annealing, path-integral quantum Monte Carlo, parallel tempering with isoenergetic cluster moves, and a quantum annealer, and show that the success metrics and the scaling are improved substantially. When combined with this algorithm, the quantum annealer's scaling was substantially improved for native Chimera graph problems. In addition, with this algorithm the scaling of the time to solution of the quantum annealer is comparable to the Hamze-de Freitas-Selby algorithm on the weak-strong cluster problems introduced by Boixo et al. Parallel tempering with isoenergetic cluster moves was able to consistently solve three-dimensional spin glass problems with 8000 variables when combined with our method, whereas without our method it could not solve any.

摘要

我们提出并应用了一种通用的、多起点算法,用于提高用于解决优化问题的低能量采样器的性能。该算法迭代地将大量变量的值固定为具有高概率最优的值。由此产生的问题更小且连接性更小,采样器往往会为这些问题提供更好的低能量样本。该算法可以轻松地进行并行化,因为多起点算法中的每个起点都是独立的,可以应用于任何可以多次运行以提供样本的启发式求解器。我们展示了使用模拟退火、路径积分量子蒙特卡罗、具有等能量团簇移动的并行温度以及量子退火器解决的几类硬问题的结果,并表明成功指标和缩放得到了显著改善。当与该算法结合使用时,量子退火器的缩放在 Chimera 图问题上得到了显著改善。此外,使用该算法,量子退火器的解决方案时间的缩放与 Boixo 等人引入的弱-强团簇问题上的 Hamze-de Freitas-Selby 算法相当。当与我们的方法结合使用时,具有等能量团簇移动的并行温度能够始终解决具有 8000 个变量的三维自旋玻璃问题,而没有我们的方法则无法解决任何问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验