Suppr超能文献

链接和节点排序在共演化投票模型中的耦合。

Coupling of link- and node-ordering in the coevolving voter model.

机构信息

Center of Excellence for Complex Systems Research, Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, PL-00662 Warsaw, Poland.

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, PL-30059 Kraków, Poland.

出版信息

Phys Rev E. 2017 Oct;96(4-1):042306. doi: 10.1103/PhysRevE.96.042306. Epub 2017 Oct 18.

Abstract

We consider the process of reaching the final state in the coevolving voter model. There is a coevolution of state dynamics, where a node can copy a state from a random neighbor with probabilty 1-p and link dynamics, where a node can rewire its link to another node of the same state with probability p. That exhibits an absorbing transition to a frozen phase above a critical value of rewiring probability. Our analytical and numerical studies show that in the active phase mean values of magnetization of nodes n and links m tend to the same value that depends on initial conditions. In a similar way mean degrees of spins up and spins down become equal. The system obeys a special statistical conservation law since a linear combination of both types magnetizations averaged over many realizations starting from the same initial conditions is a constant of motion: Λ≡(1-p)μm(t)+pn(t)=const., where μ is the mean node degree. The final mean magnetization of nodes and links in the active phase is proportional to Λ while the final density of active links is a square function of Λ. If the rewiring probability is above a critical value and the system separates into disconnected domains, then the values of nodes and links magnetizations are not the same and final mean degrees of spins up and spins down can be different.

摘要

我们研究了共进化投票模型中达到最终状态的过程。存在状态动力学的共进化,其中节点可以以概率 1-p 从随机邻居复制状态,以及链路动力学,其中节点可以以概率 p 将其链路重连到相同状态的另一个节点。在重连概率超过临界值时,会出现到冻结相的吸收转变。我们的分析和数值研究表明,在活跃相中,节点 n 和链路 m 的磁化平均值趋于相同的值,该值取决于初始条件。以类似的方式,向上和向下自旋的平均度数变得相等。由于从相同初始条件开始的许多实现的两种类型的磁化的线性组合是运动常数:Λ≡(1-p)μm(t)+pn(t)=const.,其中μ是节点的平均度数。在活跃相中,节点和链路的最终平均磁化与 Λ 成正比,而活跃链路的最终密度是 Λ 的平方函数。如果重连概率超过临界值,并且系统分为不相连的域,则节点和链路磁化的值不相同,并且最终的向上和向下自旋的平均度数可能不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验