Suppr超能文献

通过吉布斯吸附等温线从随机序贯吸附模拟中提取格子气体的状态方程。

Extracting the equation of state of lattice gases from random sequential adsorption simulations by means of the Gibbs adsorption isotherm.

机构信息

Energy Institute and Department of Chemical Engineering, City College of the City University of New York, New York, New York 10031, USA.

Benjamin Levich Institute and Department of Physics, City College of the City University of New York, New York, New York 10031, USA.

出版信息

Phys Rev E. 2017 Nov;96(5-1):052803. doi: 10.1103/PhysRevE.96.052803. Epub 2017 Nov 17.

Abstract

An alternative approach for deriving the equation of state for a two-dimensional lattice gas is proposed, based on arguments similar to those used in the derivation of the Langmuir-Szyszkowski equation of state for localized adsorption. The relationship between surface coverage and excluded area is first extracted from random sequential adsorption simulations incorporating surface diffusion (RSAD). The adsorption isotherm is then obtained using kinetic arguments, and the Gibbs equation gives the relation between surface pressure and coverage. Provided surface diffusion is fast enough to ensure internal equilibrium within the monolayer during the RSAD simulations, the resulting equations of state are very close to the most accurate equivalents obtained by cumbersome thermodynamic methods. An internal test of the accuracy of the method is obtained by noting that adsorption RSAD simulations starting from an empty lattice and desorption simulations starting from a full lattice provide convergent upper and lower bounds on the surface pressure.

摘要

提出了一种从二维格子气体的状态方程中导出的替代方法,该方法基于与推导局部吸附的朗缪尔-什兹科夫斯基状态方程类似的论点。首先从包含表面扩散的随机顺序吸附模拟(RSAD)中提取出表面覆盖率和排除区域之间的关系。然后使用动力学论点获得吸附等温线,吉布斯方程给出表面压力和覆盖率之间的关系。只要表面扩散足够快,以确保在 RSAD 模拟过程中单层内的内部平衡,得到的状态方程与通过繁琐的热力学方法获得的最准确的等效状态方程非常接近。通过注意到从空晶格开始的吸附 RSAD 模拟和从满晶格开始的解吸模拟提供了表面压力的收敛上限和下限,对该方法的准确性进行了内部测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验