Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.
Phys Rev E. 2017 Nov;96(5-1):052222. doi: 10.1103/PhysRevE.96.052222. Epub 2017 Nov 28.
The Rayleigh-Taylor instability is a gravitational instability in two fluids where the heavier fluid is set over the lighter fluid. The instability occurs both in classical fluids and quantum fluids. We numerically study the Rayleigh-Taylor instability using coupled Gross-Pitaevskii equations for two-component Bose-Einstein condensates. We carry out numerical simulations that the heavier component is set in a torus initially which is surrounded by the lighter component. When the torus falls, the Rayleigh-Taylor instability develops and a sagging pattern appears. This instability is investigated for the two cases with and without a vortex ring inside the torus. We find that a vortex ring suppresses the instability when the radius of the torus is small.
瑞利-泰勒不稳定性是一种在两种流体中出现的重力不稳定性,其中较重的流体位于较轻的流体之上。这种不稳定性既存在于经典流体中,也存在于量子流体中。我们使用双分量玻色-爱因斯坦凝聚的耦合 Gross-Pitaevskii 方程对瑞利-泰勒不稳定性进行了数值研究。我们进行了数值模拟,最初将较重的成分设置在一个环形容器中,该容器被较轻的成分包围。当环形容器下落时,瑞利-泰勒不稳定性发展,出现下垂模式。我们研究了环形容器内有无涡环的两种情况。我们发现,当环形容器的半径较小时,涡环会抑制不稳定性。