Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany.
LIPhy, Université Grenoble Alpes and CNRS, F-38402 Grenoble, France.
Phys Rev E. 2017 Nov;96(5-1):052610. doi: 10.1103/PhysRevE.96.052610. Epub 2017 Nov 27.
Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010)10.1103/PhysRevLett.104.098102].
微生物通常可以通过鞭毛或纤毛的拍打在液体环境中游动。在这项数值工作中,我们分析了鞭毛拍打对游动细胞在剪切流中轨道的影响。我们还计算了鞭毛拍打对微游动体稀悬浮液流变学的影响。为了模拟莱茵衣藻(Chlamydomonas Reinhardtii)以类似蛙泳的方式用两个前鞭毛进行的前后反向旋转的两个前珠子进行拍打,提出了一个三维模型。主动游动模型在直线剪切流中揭示了不寻常的角轨道。即,游动者在流场中暂时维持取向。这种行为是剪切流和游动者周期性鞭毛拍打运动之间相互作用的结果,鞭毛会对细胞体施加内部扭矩。这种特殊的行为对流变性质的悬浮液有一些重要的影响。我们计算了由这种孤立模型微游动体组成的悬浮液(稀溶液)在剪切流中的爱因斯坦粘度。我们使用基于简化鞭毛和细胞体之间的流体动力相互作用的 Rotne-Prager 类似近似的数值模拟。结果表明,与非活性悬浮液相比,活性游动体悬浮液的固有粘度增加,并且表现出剪切变稀行为,这与之前的实验测量结果一致[Phys. Rev. Lett. 104, 098102 (2010)10.1103/PhysRevLett.104.098102]。