Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico 00681, USA.
Phys Rev E. 2017 Nov;96(5-1):052607. doi: 10.1103/PhysRevE.96.052607. Epub 2017 Nov 22.
The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α. In this work, the time-dependent active diffusivity and the crossover time (τ^{cross})-from ballistic to diffusive regimes-are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α, the particle undergoes a directional (or ballistic) propulsive motion at very short times (t≪τ^{cross}). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t≫τ^{cross}), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α=0), the crossover time is equal to the characteristic time scale for rotational diffusion, τ_{rot}. In the presence of a magnetic field (α>0), the correlation function, the active diffusivity, and the crossover time decrease with increasing α. The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τ^{cross}≪τ_{rot}. In the limit of weak fields (α≪1), the crossover time decreases quadratically with α, while in the limit of strong fields (α≫1) it decays asymptotically as α^{-1}. The results are in excellent agreement with those obtained by Brownian dynamics simulations.
在均匀磁场的影响下,研究了经历三维布朗运动(平移和旋转)的磁性主动布朗粒子的动力学。粒子沿着其磁偶极矩以恒定速度自推进,由于布朗和磁场扭矩之间的相互作用,磁偶极矩重新定向,由 Langevin 参数α量化。在这项工作中,通过推进方向波动的时变相关函数计算了时变的主动扩散系数和交叉时间(τ^{cross})-从弹道到扩散区域。结果表明,对于任何值的α,粒子在非常短的时间(t≪τ^{cross})内经历方向(或弹道)推进运动。在这个区域,相关函数随时间线性减小,主动扩散系数随其增加。在相反的时间极限(t≫τ^{cross})下,粒子在纯扩散区域中运动,相关函数渐近地衰减到零,主动扩散系数达到等于粒子的长时间主动扩散系数的常数值。如预期的在没有磁场的情况下(α=0),交叉时间等于旋转扩散的特征时间尺度,τ_{rot}。在存在磁场的情况下(α>0),相关函数、主动扩散系数和交叉时间随着α的增加而减小。磁场调节粒子的推进区域。在这里,磁场减少了主动粒子经历定向运动的时间段。因此,主动粒子在τ^{cross}≪τ_{rot}下迅速达到扩散区域。在弱场极限(α≪1)下,交叉时间随α二次减小,而在强场极限(α≫1)下,它渐近地按α^{-1}衰减。结果与布朗动力学模拟的结果非常吻合。