Suppr超能文献

自生表面磁场抑制高能质子的激光驱动鞘层加速。

Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons.

作者信息

Nakatsutsumi M, Sentoku Y, Korzhimanov A, Chen S N, Buffechoux S, Kon A, Atherton B, Audebert P, Geissel M, Hurd L, Kimmel M, Rambo P, Schollmeier M, Schwarz J, Starodubtsev M, Gremillet L, Kodama R, Fuchs J

机构信息

LULI-CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex, F-91128, France.

European XFEL, GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.

出版信息

Nat Commun. 2018 Jan 18;9(1):280. doi: 10.1038/s41467-017-02436-w.

Abstract

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 T at laser intensities ~10 W cm) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

摘要

高强度激光与固体箔相互作用会产生大量相对论电子,这些电子进而在靶周围产生强鞘层电场。在这种场中加速的质子束具有显著特性,可实现等离子体现象的超快射线照相或致密材料的等容加热。鉴于长期的多学科目标(例如散裂中子源或癌症治疗),当前的挑战是实现远超过100 MeV的质子能量,通常认为通过提高靶上激光强度可以实现这一点。在此,我们展示了实验和数值结果,表明在足够高的激光强度下,靶表面自生的静磁场可能对鞘层驱动的离子加速构成基本限制。这些场可能足够强(在激光强度约为10¹⁹ W/cm²时约为10 T),足以使鞘层电子磁化并使质子偏离加速区域,从而降低质子能够获得的最大能量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03ce/5773560/1498344ca74c/41467_2017_2436_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验