Institute of Materials Science, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
Institute of Applied Geoscience, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201705573. Epub 2018 Jan 19.
Coupling of magnetic, ferroelectric, or piezoelectric properties with charge transport at oxide interfaces provides the option to revolutionize classical electronics. Here, the modulation of electrostatic potential barriers at tailored ZnO bicrystal interfaces by stress-induced piezoelectric polarization is reported. Specimen design by epitaxial solid-state transformation allows for both optimal polarization vector alignment and tailoring of defect states at a semiconductor-semiconductor interface. Both quantities are probed by transmission electron microscopy. Consequently, uniaxial compressive stress affords a complete reduction of the potential barrier height at interfaces with head-to-head orientation of the piezoelectric polarization vectors and an increase in potential barrier height at interfaces with tail-to-tail orientation. The magnitude of this coupling between mechanical input and electrical transport opens pathways to the design of multifunctional electronic devices like strain triggered transistors, diodes, and stress sensors with feasible applications for human-computer interfacing.
在氧化物界面上将磁、铁电或压电性能与电荷输运相结合,为彻底革新经典电子学提供了可能。在此,报告了通过应力诱导的压电极化调制定制 ZnO 双晶界处的静电势垒。通过外延固态相变进行的样品设计,允许在半导体-半导体界面处对最佳极化矢量排列和缺陷态进行调整。这两个量都通过透射电子显微镜进行了探测。结果表明,在压电极化矢量首尾相连的界面处,单轴压缩应力会完全降低势垒高度,而在压电极化矢量头对头的界面处,势垒高度会增加。这种机械输入与电输运之间的耦合程度为设计多功能电子器件(如应变触发晶体管、二极管和应力传感器)开辟了道路,这些器件在人机界面中有可行的应用。