School of Chemical Engineering, The University of Queensland , Brisbane, QLD 4072, Australia.
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5992-6005. doi: 10.1021/acsami.7b17470. Epub 2018 Jan 31.
We investigate the structure of polyimide (PI) at the surface of a silicalite zeolite (MFI), as part of a model hybrid organic-inorganic mixed matrix membrane system, through equilibrium molecular dynamics simulations. Furthermore, we report a comparison of the adsorption and transport characteristics of pure components CO and CH in PI, MFI, and PI-MFI composite membranes. It is seen that incorporation of MFI zeolite into PI results in the formation of densified polymer layers (rigidified region) near the surface, having thickness around 1.2 nm, before bulklike behavior of the polymer is attained, contrary to empirical fits suggesting the existence of an approximately 1 μm thick interface between the polymer and filler. This region offers an extra resistance to gas diffusion especially for the gas with a larger kinetic diameter, CH, thus improving the CO/CH kinetic selectivity in the PI-MFI composite membrane. Furthermore, we find that the kinetic selectivity of CO over CH in the rigidified region increases with temperature and that additivity of transport resistances in MFI, interfacial layer, and bulklike region of the polymer satisfactorily explains transport behavior in the composite sandwich investigated. The gas adsorption isotherms are extracted considering the dynamics and structural transitions in the PI and PI-MFI composite upon gas adsorption, and it is seen that the rigidified layer affects the gas adsorption in the polymer in the PI-MFI hybrid system. A significant increase in CO/CH selectivity as well as gas permeability is observed in the PI-MFI composite membrane compared to that in the pure PI polymer membrane, which is correlated with the high selectivity of the rigidified interfacial layer in the polymer. Thus, while enhancing transport resistance, the rigidified layer is beneficial to membrane selectivity, leading to improved performance based on the Robeson upper bound plot for polymers.
我们通过平衡分子动力学模拟研究了硅沸石(MFI)表面聚酰亚胺(PI)的结构,这是模型杂化有机-无机混合基质膜系统的一部分。此外,我们报告了在 PI、MFI 和 PI-MFI 复合膜中纯组分 CO 和 CH 的吸附和传输特性的比较。结果表明,与经验拟合表明聚合物和填料之间存在约 1μm 厚的界面相反,将 MFI 沸石掺入 PI 会导致聚合物表面附近形成致密的聚合物层(刚性化区域),厚度约为 1.2nm,然后才达到聚合物的块状行为。与经验拟合表明聚合物和填料之间存在约 1μm 厚的界面相反,将 MFI 沸石掺入 PI 会导致聚合物表面附近形成致密的聚合物层(刚性化区域),厚度约为 1.2nm,然后才达到聚合物的块状行为。该区域特别为扩散阻力较大的气体(如 CH)提供了额外的扩散阻力,从而提高了 PI-MFI 复合膜中 CO/CH 的动力学选择性。此外,我们发现刚性化区域中 CO 对 CH 的动力学选择性随温度升高而增加,并且在聚合物的 MFI、界面层和块状区域中添加传输阻力可以很好地解释所研究的复合夹层中的传输行为。考虑到气体吸附过程中 PI 和 PI-MFI 复合体系的动力学和结构转变,提取了气体吸附等温线,结果表明刚性化层会影响聚合物中气体的吸附。与纯 PI 聚合物膜相比,PI-MFI 复合膜中 CO/CH 选择性和气体渗透性显著提高,这与聚合物中刚性化界面层的高选择性有关。因此,虽然增加了传输阻力,但刚性化层有利于膜的选择性,从而根据聚合物的 Robeson 上限图提高了性能。