School of Chemical Engineering, The University of Queensland , Brisbane, Queensland 4072, Australia.
Langmuir. 2017 Jan 31;33(4):936-946. doi: 10.1021/acs.langmuir.6b04037. Epub 2017 Jan 17.
We explore the temperature dependence of the self-, corrected-, and transport-diffusivities of CO, CH, and N in a polyethylene (PE) polymer membrane through equilibrium molecular dynamics simulations. We also investigate the morphology of the polymer membrane based on the intermolecular radial distribution function, free volume, and pore size distribution analysis. The results indicate the existence of 1.5-3 Å diameter pores in the PE membrane, and with the increase in the temperature, the polymer swells linearly with changing slope at 450 K in the absence of gas and exponentially in the presence of gas. The gas adsorption isotherms extracted via a two-step methodology, considering the dynamics and structural transitions in the polymer matrix upon gas adsorption, were fitted using a "two-mode sorption" model. Our results suggest that CO adsorbs strongly, whereas N shows weak adsorption in PE. The results demonstrate that CO is more soluble, whereas N is least soluble. Further, it is found that an increase in the temperature negatively impacts the solubility of CO and CH but positively for N; this reverse solubility behavior is due to increased availability of pores accessible to N, which are kinetically closed at the lowest temperatures. The reported self-diffusivities of the gases from our simulations are on the order of 10 cm/s, consistent with the experimental evidence, whereas transport-diffusivities are 2 orders of magnitude higher than self-diffusivities. Furthermore, the temperature dependence of the self-diffusivity follows Arrhenius behavior, whereas the transport-diffusivity follows non-Arrhenius behavior having different activation energies in low and high temperature regions. Also, it is seen that loading has little effect on the self- and corrected-diffusion coefficients of all gases in the PE membrane.
我们通过平衡分子动力学模拟研究了 CO、CH 和 N 在聚乙烯(PE)聚合物膜中的自扩散系数、自校正扩散系数和输运扩散系数随温度的变化关系。我们还基于分子间径向分布函数、自由体积和孔径分布分析研究了聚合物膜的形态。结果表明,PE 膜中存在 1.5-3Å 直径的孔,随着温度的升高,聚合物在无气体存在时以 450K 时斜率线性膨胀,在有气体存在时呈指数膨胀。通过两步法提取的气体吸附等温线,考虑了气体吸附时聚合物基质的动力学和结构转变,使用“双模式吸附”模型进行拟合。结果表明,CO 在 PE 中吸附较强,而 N 吸附较弱。结果表明,CO 的溶解度更高,而 N 的溶解度最低。此外,还发现温度升高对 CO 和 CH 的溶解度产生负面影响,但对 N 的溶解度产生积极影响;这种相反的溶解度行为是由于在最低温度下动力学上关闭的可及孔的数量增加,N 在这些孔中更易扩散。我们模拟得到的气体自扩散系数在 10cm/s 左右,与实验证据一致,而输运扩散系数比自扩散系数高 2 个数量级。此外,自扩散系数的温度依赖性符合阿仑尼乌斯行为,而输运扩散系数遵循非阿仑尼乌斯行为,在低温区和高温区具有不同的激活能。还可以看出,负载对 PE 膜中所有气体的自扩散系数和自校正扩散系数几乎没有影响。