Department of Chemistry, Ball State University , Cooper Physical Science Building, Muncie, Indiana 47304-0445, United States.
J Org Chem. 2018 Feb 16;83(4):1790-1796. doi: 10.1021/acs.joc.7b02643. Epub 2018 Feb 2.
Intramolecular cyclization of the heteroenyne-allene 2-((biphenyl-2-ylimino)methyleneamino)benzonitrile 1 to phenanthridine-fused quinazoliniminium salt PQ in the presence of a Lewis acid at room temperature involves formation of two new bonds: a C-C bond and a C-N bond. In this article, density functional theory (B3LYP and M06-2X) was employed in conjunction with 6-311G* basis set to gain insights into the mechanism of this cyclization reaction. The solvent effects were considered using Polarizable Continuum Model with nitromethane as the solvent. Our calculations show that C-C bond formation precedes the C-N bond formation. Precisely, the mechanism involves initial protonation of 1 at N and N of the carbodiimide to form rapidly equilibrating conformers of the tautomers 2a,b and 3a,b. The Curtin-Hammett principle is invoked to determine the course of the reaction from these protonated species, which predicts that the intramolecular Friedel-Crafts type N-acylation (C-C bond formation) occurs between the protonated carbodiimide and biphenyl ring of the isomer 3b to form phenanthridinium cation 6b via transition state TS36. Once 6b is formed, it converts to its most stable tautomers 8R and 9a. Once again, the Curtin-Hammett principle suggests that intramolecular nucleophilic attack is preferred from the tautomer 8R, where phenanthridine N-atom (N) attacks the protonated nitrile group (C-N bond formation) and results in the formation of intermediate 11 via TS811. 11 then tautomerizes to the most stable cation 13. The coordination of the latter with the chloride anion yields the phenanthridine-fused heterocyclic salt PQ with overall release of energy. The pathways involving protonation at the nitrile (N) of 1 were found to be energetically unfavorable and thus insignificant to the mechanism of cyclization.
在室温下,路易斯酸存在下,杂烯炔-烯丙基 2-((联苯-2-亚氨基)亚甲基氨基)苯甲腈 1 的分子内环化反应涉及形成两个新键:C-C 键和 C-N 键。在本文中,采用密度泛函理论(B3LYP 和 M06-2X)结合 6-311G*基组,深入了解了该环化反应的机理。考虑了溶剂效应,使用包含硝基甲烷的极化连续模型。我们的计算表明,C-C 键的形成先于 C-N 键的形成。确切地说,该机制涉及 1 在 N 和碳二亚胺的 N 上的初始质子化,以快速形成互变异构体 2a、b 和 3a、b 的快速平衡构象。柯廷-汉密特原理被用来从这些质子化物种中确定反应的进程,该原理预测,质子化的碳二亚胺与异构体 3b 的联苯环之间发生分子内傅-克型 N-酰化(C-C 键形成),通过过渡态 TS36 形成菲啶鎓阳离子 6b。一旦形成 6b,它就会转化为其最稳定的互变异构体 8R 和 9a。再次,柯廷-汉密特原理表明,从互变异构体 8R 优先进行分子内亲核进攻,其中菲啶 N-原子(N)攻击质子化的腈基团(C-N 键形成),并通过 TS811 导致中间体 11 的形成。11 然后互变异构为最稳定的阳离子 13。后者与氯离子的配位生成带有总能量释放的菲啶稠合杂环盐 PQ。在 1 的腈(N)上进行质子化的途径被发现是能量不利的,因此对环化反应的机理不重要。