Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
Sci Rep. 2018 Jan 19;8(1):1258. doi: 10.1038/s41598-018-19539-z.
Direct reprogramming of fibroblasts into cardiomyocytes is a promising approach for cardiac regeneration but still faces challenges in efficiently generating mature cardiomyocytes. Systematic optimization of reprogramming protocols requires scalable, objective methods to assess cellular phenotype beyond what is captured by transcriptional signatures alone. To address this question, we automatically segmented reprogrammed cardiomyocytes from immunofluorescence images and analyzed cell morphology. We also introduce a method to quantify sarcomere structure using Haralick texture features, called SarcOmere Texture Analysis (SOTA). We show that induced cardiac-like myocytes (iCLMs) are highly variable in expression of cardiomyocyte markers, producing subtypes that are not typically seen in vivo. Compared to neonatal mouse cardiomyocytes, iCLMs have more variable cell size and shape, have less organized sarcomere structure, and demonstrate reduced sarcomere length. Taken together, these results indicate that traditional methods of assessing cardiomyocyte reprogramming by quantifying induction of cardiomyocyte marker proteins may not be sufficient to predict functionality. The automated image analysis methods described in this study may enable more systematic approaches for improving reprogramming techniques above and beyond existing algorithms that rely heavily on transcriptome profiling.
将成纤维细胞直接重编程为心肌细胞是心脏再生的一种很有前途的方法,但在有效生成成熟心肌细胞方面仍面临挑战。系统优化重编程方案需要可扩展的、客观的方法来评估细胞表型,而不仅仅是转录特征。为了解决这个问题,我们从免疫荧光图像中自动分割重编程的心肌细胞,并分析细胞形态。我们还引入了一种使用 Haralick 纹理特征来量化肌节结构的方法,称为肌节纹理分析(SarcOmere Texture Analysis,SOTA)。我们发现,诱导的心肌样细胞(iCLMs)在心肌细胞标志物的表达上高度可变,产生了体内通常看不到的亚型。与新生小鼠心肌细胞相比,iCLMs 的细胞大小和形状更具可变性,肌节结构更不规整,肌节长度也更短。综上所述,这些结果表明,通过定量分析心肌细胞标志物的诱导来评估心肌细胞重编程的传统方法可能不足以预测其功能。本研究中描述的自动图像分析方法可以实现更系统的方法来改进重编程技术,超越传统上严重依赖转录组分析的算法。